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Advances in artificial intelligence over the past few
years and across virtually all fields of computational sci-
ence have demonstrated that algorithms based on ma-
chine learning (ML) can be more efficient than and/or en-
able qualitatively new sorts of computations over human-
designed algorithms. Recent efforts have begun the work
of adapting and deploying these methods for use in the-
oretical physics where, unlike in many typical artificial
intelligence applications, it is often critical to guaran-
tee exactness. In this Letter of Interest, we discuss two
properties that can be built into ML-based algorithms
that we believe will be critical features of ML for theory
in the coming decade: provable exactness and explicitly
encoded symmetries. Early results in these directions
suggest that ML will be a promising avenue to improve
and accelerate calculations in the computationally de-
manding context of numerical lattice quantum field the-
ory (LQFT), and in particular its application to quantum
chromodynamics (LQCD). We highlight the example of
ML-based samplers for LQFTs, where ML methods may
be fruitfully applied without compromising systematic
control of uncertainties and which are enabled by sym-
metries built into the models.

Configuration generation: In numerical LQFT, we
evaluate the lattice-regulated path integral numerically
by phrasing the problem as sampling a probability dis-
tribution p = exp[−SE ]/Z defined by the Euclidean-time
lattice action SE . Importance sampling algorithms, typ-
ically Markov-chain Monte Carlo (MCMC) methods, al-
low us to sample these distributions with asymptotic cor-
rectness (in the limit of large sample sizes), yielding prov-
ably unbiased results with controlled uncertainties. The
modern LQCD program has very successfully employed
the Hybrid Monte Carlo (HMC) algorithm for this task
but, in limits of physical interest, HMC suffers from poor
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scaling due to critical slowing down and (exponentially)
slow tunneling between vacua (e.g. topological sectors,
center sectors in deconfined phases of pure gauge theo-
ries). It may be possible to replace or augment HMC
with ML-based algorithms to avoid or reduce these scal-
ing problems.

ML-accelerated updating: One option is to re-
place some or all of the HMC updates used to con-
struct Markov chains with some computationally cheaper
and/or faster-mixing ML-based updater (constructed
with an accept/reject step to maintain correctness). For-
ward evaluation of ML models can be made inexpensive
and parallelizable, so obtaining a practical performance
advantage is potentially easier than beating HMC mixing
times on a per-step basis. Hybrid algorithms may also
be efficient (i.e., replacing only some HMC steps with
ML-based updates, in rough analogy to the use of over-
relaxation to augment Heat Bath in sampling pure gauge
theories). While early demonstrations of ML-based up-
date algorithms [1–6] suggest that ML-based methods
may be able to outperform HMC, applications which cir-
cumvent HMC’s scaling issues have not yet been conclu-
sively demonstrated. However, update-based algorithms
may be more conservative than necessary, as ML methods
may make a radically different approach possible: direct
sampling of the probability distribution.

Direct samplers: Recent works have demonstrated
that it is possible to construct direct samplers for lat-
tice field theories using ML methods [7–12]. In this ap-
proach, one specifies and optimizes a variational ansatz
to obtain an approximate direct sampler that generates
independent samples from a model distribution similar
to the target one p̃ ≈ p ∝ exp[−SE ]. If it is tractable
to compute the probability p̃(U) of drawing each sam-
ple U , one can sample the target distribution p by either
reweighting or constructing a Markov chain via the In-
dependence Metropolis algorithm [7]. So long as p̃ is a
sufficiently good approximation of p that reweighting fac-
tors are close to one or the Metropolis accept rate is not
too low, this approach can be used to efficiently evalu-
ate path integrals with asymptotically correct statistics
(given that ergodicity is guaranteed, i.e. p̃ has support
everywhere p does).

Normalizing flows, a particular class of generative
ML model, are particularly well-suited to this task and
have been used to construct direct samplers for two-
dimensional field theories, including real scalar field the-
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FIG. 1. Standard approaches (HMC and Heat Bath) to
MCMC sampling for U(1) gauge theory explore the distri-
bution of topological charge Q very slowly compared with
the flow-based direct sampler. Results are shown for cou-
pling β = 7 on a 16 × 16 lattice. The first (second) half of
the Markov chain history is displayed for HMC (HB). Figure
reproduced from [8].

ory [7, 12] and U(1) [8] and SU(N) gauge theories [9]. A
normalizing flow takes samples drawn from some easily
sampled prior distribution r (such as independent Gaus-
sians on each lattice site for scalar field theory, or the uni-
form distribution over the Haar measure for each gauge
link for gauge theories) and then performs a sequence of
invertible changes-of-variables which “flow” the prior dis-
tribution to a more complicated target, p̃. These changes-
of-variables are engineered to be invertible and have sim-
ple Jacobians so that computation of p̃(U) is tractable.
By parametrizing these transformations with neural net-
works, one obtains a trainable, expressive ansatz for an
approximate direct sampler. Normalizing flows can be
“self-trained” simply by drawing samples from the cur-
rent model and then using them to estimate some op-
timizable metric of how much p and p̃ differ (e.g. the
Kullback-Leibler divergence); this avoids the need for an
expensive HMC-generated training dataset or the use of
adversarial methods.

Direct samplers offer significant advantages over
update-based samplers like HMC. Formally, they may
be able to circumvent scaling problems experienced by
updaters: in [7] it was demonstrated that flow-based di-
rect sampling of real scalar field theory does not suffer
from critical slowing down, while [8] demonstrated that
flow-based direct samplers for U(1) have an asymptotic
scaling advantage over HMC and Heat Bath in regimes
where those methods suffer from topological freezing
(see Fig. 1). Direct samplers may also offer novel ways
to access physics, like thermodynamic equation-of-state
observables in LQFTs, that are difficult to probe us-
ing update-based samplers [11, 12]. Practically, unlike
update-based samplers, generating an ensemble of con-
figurations using direct samplers is embarrassingly par-
allel: independent instances of the sampler may generate
configurations without communicating, after which the
configurations can be gathered and composed into a sin-
gle Markov chain as a postprocessing step.

The benefits of direct sampling come at the cost of
up-front training of the model, which may be signifi-
cant. However, early results [9] suggest that retraining a
model trained to sample one set of physical parameters

can rapidly produce efficient samplers for nearby sets of
parameters, allowing the cost of training a single model
from scratch to be amortized.

Encoding symmetries in ML models:

When ML models are applied to physics problems,
the underlying symmetries of the physical system are re-
flected in a constrained relationship between the input
and output of the model. Any ML model which is not
constructed to explicitly respect the physical symmetries
of the problem will necessarily have to learn a (typically
highly non-trivial) set of constraints on the model param-
eters that enforce invariance or equivariance with respect
to those symmetries. This is computationally wasteful
in the best case but, more problematically, if these con-
straints are too complicated or impossible to satisfy in
the model architecture, it can be difficult or impossible
to train the model to an acceptable solution. For models
applied to highly symmetric systems like lattice gauge
theories, training without explicitly encoding the sym-
metries of the problem is practically infeasible.

Some symmetries can be encoded using standard ar-
chitectures developed for other applications: when ap-
plied to a spacetime lattice, convolutional neural nets
(CNNs) naturally encode translational equivariance, and
in some cases a few additional by-hand parameter restric-
tions can make these models equivariant under the hyper-
cubic symmetry group of the lattice. Beyond massively
reducing the number of parameters versus using a fully-
connected architecture, encoding translational invariance
using CNNs results in models that can be applied to dif-
ferent volumes. This yields an important practical advan-
tage in that models can be trained at one (small) volume
and then cheaply applied to another (up to whatever re-
training of the model may be necessary to account for
the change in finite-volume effects).

Other physical symmetries, like gauge invariance, re-
quire non-standard architectures. A framework to con-
struct gauge-equivariant flows has been worked out for
U(1) and SU(N) gauge symmetries and applied to con-
struct flow-based direct samplers for both [8, 9]. Flows
are versatile and straightforwardly applicable outside the
original application of direct sampling; for example, they
could be used in ML-based updaters. However, this
framework will need to be extended to different model
architectures to address problems for which other ML ap-
proaches are more natural; for example, flows map from
configuration to configuration, and so are ill-suited for
information-lossy tasks like regression on observables.

Infrastructure: ML methods generically require a
large up-front training cost, but this cost does not have
to be paid for every study: the heavily symmetry-
constrained models likely to be successful in LQCD ap-
plications have relatively few independent parameters to
store, and so are easy to distribute. As ML applications
to LQCD mature, trained models and the software re-
quired to use them should be considered a common good
to be distributed publicly.

It will be important for the LQCD community to en-
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courage the development of software and hardware op-
timized for the specific ML tasks important to us (es-
pecially given that the relevant hardware optimizations
may translate to better performance for classical LQCD
computations). For example, in contrast to typical high-
throughput ML tasks, training (and possibly evaluating)
lattice-relevant ML models is likely to require tightly-

networked computing resources. Additionally, fast high-
dimensional (4D, at least) convolutions are particularly
important, as well as sparse convolutions and convolu-
tions with parameter restrictions. Further investigation
is warranted into what resources AI for theory will re-
quire in the coming decade.
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