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1 Introduction

Machine Learning (ML) technologies allows us to process large amount of multi-dimensional data
and defining nonlinear map, solve minimization relation, finding correlations from data. It could
also generate or predict a set of data, or ensemble, of a particular features.

Despite the vast improvements over 40+ years in hardware, software, algorithm and theoretical
understanding of Lattice QCD(LQCD), there are a number of LQCD computations which are still
numerically challenging and could take advantage of ML technologies. Below we write a list of
interesting ML applications for which we foresee lattice QCD computation could be improved.

2 Configuration generation with light fermions

The configuration generation, the backbone of the lattice computation, has the significant challenge
for fine lattice spacings or large space-time volumes due to the critical slowing down, the phenomena
of growing auto-correlation in the Markov chain Monte-Carlo (MCMC) [1, 2]. For example, the fine
lattice spacing (a−1 ≤ 0.05fm) which is needed for B quark physics or high momentum hadrons
(e.g. Parton distribution), it is still computational expensive to generate enough ensemble. This is
somewhat counter-intuitive considering the asymptotic freedom of QCD, by which the short-distance
dynamics of gluon fields on finer lattice spacing would be smoother, and closer to the perturbative or
free theory. The ciritical slowing down task of the Exascale Challenge Program has made progress
on this issues.

The very interesting idea of applying the Flow-base mapping [3] in configuration generation was
introduced [4, 5, 6]. We are interested in extending the work[, mostly done for pure gauge ensembles
so far.] into the lattice gauge theory with fermion determinant, by Machine Learning the Flow-
map in the canonical variables of the Hybrid Monte Carlo (HMC) algorithm [7]. Since the fermion
determinant are non-local object, machine learning the map from the coarse lattice spacing to the
target fine spacing may be non-trivial. We intended to explore combinations of various techniques
of ML such as the class of ensemble learning [8] or their approximated variances [9]. Alternatively,
we would choose the training data in an iterative process of learning and validation, or use physical
parameters gradually changing from zero to ML in step-by-step manner.

We are also interested in several MCMC methods extended by capabilities of ML. The examples
include use of effective gluon actions with many couplings representing fermion determinant [10,
11], parallel tempering [12, 13], or multicanonical simulation [14], sub-volume update [15], cluster
algorithms [16, 17, 18] or use of gradient flow [19]. The similar techniques may be useful in computing
observables too. There is already a work [20] utilizing neural network in realizing the holographic
renormalization group for two dimensional φ4 theory, whose extension to higher dimension or gauge
theories are also interesting.

3 Measurements acceleration

While the numerical cost for ensemble generation remains significant, increasing complexity and
the noisy nature of some of the most interesting observables suggests naive continuation of current
approaches for evaluating these observables will become prohibitive. ML approaches with proper bias
coorrection can potentially reduce the number of necessary measurement significantly by replacing
it with less noisy and/or less expensive observables, as explored for 3pt function [21] and matrix
element for PDF [22], also [23].

Neural networks have a capability for function regressions. For example, one could calculate a
wave function and its energy for a given potential energy [24, 25, 26]. We may use the output of
similar neural networks, which predicts the inverse of the Dirac operator from a source vector and
a given gauge field within a certain accuracy, which strongly depends on the amount of training
data. Transfer learning technique [27] for more than one ensemble may help this issue. The ap-
proximated solution, then, could be utilized as an initial guess of the CG solver in both valence
quark propagator and ensemble generation similar to the chronological inverter[28]. Analogous ML
application for eigen vectors/values of Dirac operator would be also useful for the deflation and
low-mode approximation commonly used in LQCD.
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4 Machine learning for precision physics

When we apply machine learning to theoretical physics, especially to precision physics, it is necessary
to develop a theory for handling errors. For example, in the three-point functions [21, 22] , the bias
of the prediction is removed by the correction term computed on a smaller samples. In the flow
base algorithm [4, 5, 6], the Metropolis test guarantees the exactness of the ensemble probability.
In cases where the errors of ML prediction cannot be eliminated in these ways, it would be useful
to have a framework to evaluate the uncertainty of the results of ML, even a creude error estimate
similar to the power counting in perturbation theory is already useful. In order to do this, it is
necessary to construct a theoretical framework based on Bayesian statistics, that describes not only
the input data uncertainties but also the probabilistic distribution of the neutral network and leads
to the uncertainties of ML results [29].

5 Information extraction from internal states of ML

After training with physical inputs, the internal states, or model, of the machines potentially obtain
very valuable information of physics. For example, the phase transition in classical statistical models
can be read from the weight of trained neural networks [30, 31] and also in the quantum systems
[32, 33, 34]. In [35, 36, 37], the internal states are interpreted as the spacetime metrics, which then
allow one to use relation in AdS/CFT correspondence to predict physical observables.

One may worry that machine, whose internal states allows a straightforward physical interpre-
tation, is too simple to solve non-trivial problems (e.g. machine with linear fit or regression tree).
The above examples, however, show a few success in extracting physically relevant information [38],
and we would seek for new physics insights by inspecting the internal states of ML.

3



References

[1] S. Schaefer, R. Sommer and F. Virotta, Critical slowing down and error analysis in lattice qcd
simulations, Nuclear Physics B 845 (Apr, 2011) 93–119.

[2] A. Tanaka and A. Tomiya, Towards reduction of autocorrelation in hmc by machine learning,
arXiv preprint arXiv:1712.03893 (2017) .

[3] L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using real nvp, 2017, URL
https://arxiv. org/abs/1605.08803 .

[4] M. Albergo, G. Kanwar and P. Shanahan, Flow-based generative models for Markov chain
Monte Carlo in lattice field theory, Phys. Rev. D 100 (2019) 034515, [1904.12072].

[5] G. Kanwar, M. S. Albergo, D. Boyda, K. Cranmer, D. C. Hackett, S. Racanière et al.,
Equivariant flow-based sampling for lattice gauge theory, 2003.06413.

[6] D. Boyda, G. Kanwar, S. Racanière, D. J. Rezende, M. S. Albergo, K. Cranmer et al.,
Sampling using SU(N) gauge equivariant flows, 2008.05456.

[7] S.-H. Li, C.-X. Dong, L. Zhang and L. Wang, Neural canonical transformation with symplectic
flows, Physical Review X 10 (Apr, 2020) .

[8] X. Dong, Z. Yu, W. Cao, Y. Shi and Q. Ma, A survey on ensemble learning, Frontiers of
Computer Science (2020) 1–18.

[9] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A
simple way to prevent neural networks from overfitting, Journal of Machine Learning Research
15 (2014) 1929–1958.

[10] S. Ejiri, S. Itagaki, R. Iwami, K. Kanaya, M. Kitazawa, A. Kiyohara et al., End point of the
first-order phase transition of qcd in the heavy quark region by reweighting from quenched qcd,
Physical Review D 101 (Mar, 2020) .

[11] A. C. Irving and J. C. Sexton, Approximate actions for lattice QCD simulation, Phys. Rev. D
55 (1997) 5456–5473, [hep-lat/9608145].

[12] R. H. Swendsen and J.-S. Wang, Replica monte carlo simulation of spin-glasses, Phys. Rev.
Lett. 57 (Nov, 1986) 2607–2609.

[13] UKQCD collaboration, B. Joo, B. Pendleton, S. M. Pickles, Z. Sroczynski, A. C. Irving and
J. C. Sexton, Parallel tempering in lattice QCD with O(a)-improved Wilson fermions, Phys.
Rev. D 59 (1999) 114501, [hep-lat/9810032].

[14] C. Bonati, M. D’Elia, G. Martinelli, F. Negro, F. Sanfilippo and A. Todaro, Topology in full
qcd at high temperature: a multicanonical approach, Journal of High Energy Physics 2018
(Nov, 2018) .

[15] J. Ambjorn, P. Bialas, J. Jurkiewicz, Z. Burda and B. Petersson, Effective sampling of random
surfaces by baby universe surgery, Phys. Lett. B 325 (1994) 337–346, [hep-lat/9401022].

[16] R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in monte carlo simulations,
Phys. Rev. Lett. 58 (Jan, 1987) 86–88.

[17] U. Wolff, Collective monte carlo updating for spin systems, Phys. Rev. Lett. 62 (Jan, 1989)
361–364.

[18] H. Suwa, Geometric allocation approach to accelerating directed worm algorithm, 1703.03136.
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