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Abstract
Here we outline some of the research and promising directions in applying ML methods to field theory
with an emphasis on the MCMC sampling problem in lattice QCD.

Thematic Areas/Topical Groups:
■ (CompF3) Machine Learning
■ (CompF2) Theoretical Calculations and Simulation

1 Machine learning for Markov chain Monte Carlo
The ability to efficiently sample from probability distributions remains a widely-pursued goal across

scientific disciplines, including particle physics, molecular dynamics, protein folding, population genetics,
neuroscience, epidemiology, economics, ecology, climate science, and astrophysics & cosmology [1]. The ef-
ficiency of the Markov chain Monte Carlo (MCMC) algorithm relies on generating the next Markov state,
xt+1, independently from the previous states, x1, x2, . . . , xt. In practice, correlations between states in the
chain are unavoidable due to the intrinsic correlation of the method used for generating the state. In lattice
QCD simulations, the predominant method used is Hybrid Monte Carlo (HMC), which uses the molecular
dynamics (MD) of the gauge field to generate new configurations. While this is an improvement over generic
MCMC, as we approach the continuum limit (i.e. as the lattice spacing, a → 0), the molecular dynamics, (a)
contains modes that move exponentially slow, and (b) has potential barriers (such as those separating differ-
ent topological sectors) that become insurmountable, an effect known as the critical slowing down (CSD) of
the algorithm. Perturbative accelerations of gauge field dynamics [2–4] and its Quasi-Newton extension [5]
boost the slow modes near the free field limit, though the potential barriers stand. Recently, there has been
a growing interest in probabilistic models parameterized by neural networks, and we are seeking a method
that can mitigate CSD with a systematically reducible variance while being either: (a) provably unabiased
and exact, or (b) having a (theoretically) calculable and systematically improvable bias.

One approach [6–8] employs generative deep neural networks combined with a Metropolis accept/reject
step to remove the apparent bias. With (1.) a tractable Jacobian for the generation procedure, and (2.) a
calculable ratio of probability densities between any two configurations, one can generate a Markov chain
where the only correlations between states are from the Metropolis rejections. Related work has also been
done to build generative models that are gauge covariant by design [8–10], which is an important direction
that is beneficial to all those seeking to apply neural networks to gauge fields.

Another approach [11, 12] generalizes the molecular dynamics integrator used in HMC with arbitrarily
deep neural networks. This approach adds extra terms, parameterized by neural networks, to the symplec-
tic integrators of HMC, introducing a tractable Jacobian and leaving the existing terms to take arbitrary
functions of neural networks. As the algorithm reduces to HMC in the case of trivial neural networks, this
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approach, in principle, guarantees an improvement over HMC. We are currently working on further general-
izing this method and improving its effectiveness in simulating pure gauge theories, with the eventual goal of
handling full QCD. Our open source implementation of the L2HMC algorithm along with its modifications
for dealing with lattice gauge models is publicly available [13].

In addition to the above examples, there also exist perturbative methods to mitigate CSD in lattice QCD.
One such example of this perturbative approach uses the Wilson flow to construct a differentiable map of
the gauge field during HMC [14]. As neural network parameterization and optimization become increasingly
feasible with computing power approaching exascale, it is time for us to start to view the perturbative
methods [2–5, 14] in a new light and start studying them with machine learning techniques.

As mitigating the CSD effect for lattice QCD remains a long-term goal of the community, we need to
increase our investment into research on applying machine learning methods to simulations of field theory.

2 Machine learning for sign problem
The fermionic sign problem, or in general, the issue with complex Boltzmann weight limits our theoretical

computations, as our Monte Carlo sampler based on probability in real numbers generates noise dominating
actual observable signals. QCD at finite quark density exhibits this problem in lattice calculations, where
the signal to noise ratio decreases exponentially with volume. Parametrical optimizations of the integration
path [15–19] has been shown to alleviate the issue in effective models and low dimensional theories. Further
studies of generalized integration path optimizations would bring us closer to understanding QCD with finite
densities.

3 Explainable machine learning for studying physical systems
Nonperturbative systems require extensive studies of their observables. Machine learning algorithms are

able to construct observables that characterize the symmetric phase of the 2 + 1 D Yukawa model [20]. In
[21], it was observed that the critical behavior of the 2D Ising model can be understood through a principal
component analysis of spin configurations represented as black and white images. Moreover, it was found that
an analysis of the finite size scaling can be carried out through successive applications of a renormalization
group transformation applied to the configuration images. Such explainable machine learning methods will
help phenomenological studies or model building to understand the phase of the system and potentially
expand the search space of new physics.

4 Machine learning for improving and discovering new algorithms
Field theory researchers have studied neural networks for multigrid algorithms in gauge fields [22]. Both

algorithms in neural networks and multigrid in gauge fields have improved and became practical since then,
along with the increases in computational power, neural networks started to show promises in algorithmic
designs. A type of shallow neural networks, the Boltzmann machine, originally designed to mimic physical
systems, give researchers different cluster Monte Carlo algorithms after training [23]. This is interesting espe-
cially regarding mitigating CSD in lattice QCD simulations. For a neural network parameterized algorithm
to be efficient, instead of transferring the CSD into the complexity of the neural networks, any correlated
update of generating Markov states has to be equivalent to a cluster update. More research in deep neu-
ral networks and their application in algorithmic designs for lattice field theories will accelerate theoretical
computations.

5 Machine learning for tensor based computation
Machine learning algorithms have entered tensor based computations for field theories. Differentiable

programming for tensor networks [24] helps to simplify theoretical researchers’ burden of computing analyt-
ical derivatives in numerical computations. Neural networks are able to augment the tensor renormalization
group and behave as a well defined renormalization procedure [25] for field theories.
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