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1 Introduction

In lattice QCD simulations, a large number of observables are calculated as expectation values
over Gibbs ensembles of gluon fields (called lattices) generated using Monte Carlo Markov Chain
methods with importance sampling using the Boltzmann weight. In modern lattice QCD simula-
tions, computational costs for calculating and storing those observables are expensive. However,
the fluctuations of various observables over the statistical samples of background lattices on a given
ensemble are correlated. By exploiting the correlation between them, one can reduce computational
and storage costs for lattice QCD calculations. Such exploitation of correlations is a problem well
suited for machine learning (ML) algorithms as described in this LOI, and has the potential to
significantly improve the precision of expensive lattice QCD calculations.

2 Machine learning regression algorithm predicting lattice QCD
observables

Among the lattice QCD observables measured in the simulations, some observables are computa-
tionally cheap, while some observables are computationally expensive to calculate. If the correlation
between the observables is high, one can build a machine learning regression algorithm that pre-
dicts the values of the computationally expensive observables from the values of the computationally
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Figure 1: (Left) Normalized CCEDM
2pt and C2pt on each lattice. (Right) Phase of neutron mass

induced by CEDM calculated from direct lattice QCD measurements (2) and ML predictions (#)1.

cheap ones for each lattice configuration. In Refs.1,2, this idea has been demonstrated for a small
class of the lattice QCD observables, along with a complete bias correction procedure that makes
the final estimates unbiased and statistically sound. The results were promising. One example of
the correlation and prediction is of the charge-parity violating (CPV) phase α of the neutron spinor
in the calculation of the electric dipole moment (EDM) induced by quark chromo-EDM (CEDM)
operator is shown in Figure 1. The proposed algorithm can be applied to any lattice QCD calcu-
lations, so we propose to explore a larger class of observables that exhibits strong correlations for
the application of the method. Also, the proof-of-principal studies used only simple ML regression
models. We will investigate a wide range of machine learning algorithms to improve prediction
quality.

3 Quantum Machine Learning for Lattice QCD

Sparse coding refers to a class of unsupervised ML algorithms for finding an optimized set of basis
vectors and the fewest number of non-zero coefficients accurately reconstructing inputs vectors.
Recently, a mapping of the sparse coding to the D-Wave system is proposed and showed good
utilization of the quantum annealing features of the D-Wave system3. In Ref.4, we developed a
machine learning regression algorithm utilizing the D-Wave quantum annealer based on the sparse
coding and applied it to the prediction of lattice QCD observables. The results are promising, yet,
current performance is limited by the total number of qubits available. Further improvements of
the algorithm along with hardware developments will increase performance and extend the method
to a wider range of applications.

The sparse coding is a natural feature extraction and dimensional reduction algorithm, and
quantum implementation of the sparse coding is a way to accelerate the computational cost for ML
training and prediction. Application of the sparse coding on experimental and simulation data will
yield algorithms for data compression and computational cost reduction.
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