The effect of HEP software culture and practices
on diversity, inclusion, and retention

Deborah Bard! Matt Bellis?

'National Energy Research Scientific Computing Center (NERSC), LBNL, CA
2Siena College, Loudonville, NY

August 31, 2020

Abstract

The Snowmass 2021 effort provides an opportunity to critically exam-
ine the data analysis practices and culture in our community. While there
is little doubt that past efforts have led to some truly amazing scientific
discoveries, we suggest that practices could be improved, particularly in
analysis software, that leads to more productive and efficient workflows
while also creating a more inclusive environment. Snowmass offers us an
opportunity for us to re-think how we approach our software and how we
design the training and on-boarding for new colleagues.

Introduction

Big Science often involves experiments that take many years, even decades,
to plan and run. These large, complex experiments result in large, complex
software stacks that have often been designed by a committee of hundreds, if
not thousands. Code is usually written by a core group of experts, who have a
wealth of knowledge and expertise. This knowledge filters down to new collabo-
rators whose nearest-neighbor experts (usually senior students and post-docs in
their own group) do not always share this knowledge. The experiments have a
long timeline and so their software stacks will span shifts and improvements in
software and hardware and will incorporate those changes in “real time”. These
improvements save time and increase experimental sensitivity. However, these
improvements are often rolled out in a way that make it even more difficult for
students to adapt to.

Because documentation is often the last thing to be written and because
most grad students and post-docs who write the documentation are usually not
trained as teachers or mentors, the documentation does not always serve the
needs of the boots-on-the ground analysts who can be distributed all over the
world. This results in graduate students spending the first 2-3 years of their
PhD simply learning an evolving and changing framework just to access the
data and MC in their experiment. This is the norm in most areas of HEP, and
so PIs and others tend to accept this environment as simply an immutable fact
of nature/the system.



This environment can be particularly frustrating for women, students of
color, and other under-represented groups. The barrier to entry for a new
researcher trying to understand and contribute to such a complex stack is of-
ten viewed as a rite of passage, something that everyone has to go through.
Newcomers are given complex code to copy and edit, pointed to confusing or
non-existant documentation (often in the form of commented code), and told to
“go ask someone” how to proceed. This is a system that exacerbates imposter
syndrome - the feeling that you are not as good as everyone around you. If a
young researcher doesn’t understand what their code is doing, how can they
consider themselves to be a credible scientist? The way we structure software
development in our collaborations favors personality types that are comfortable
asking for help, often at risk of being patronised in very public forums (e.g.
Slack, hypernews) or those who have the confidence to barrel through without
really understanding what they’re doing.

While there can be a real sense of achievement in understanding even a corner
of the software used in a large collaboration like LSST, DUNE, or any of the
LHC experiments , too often the experience leaves a researcher demoralised and
disillusioned about the process of science. This stress can be mitigated by an
involved and supportive mentor or PI, but not every group has that. Promising
scientists are leaving the field as a direct result of the software culture, and
anecdotal evidence suggests that this is more likely to happen to members of
underrepresented groups in HEP. We are personally aware of students, mostly
women, who left the field after their PhD (or even before completion, opting to
take a Masters instead) in large part because of their experience with software in
their experiments. And even students who “push through” express frustration
at their experiences, especially when they are told by more senior members of
their collaboration that “this is just how things are”.

Ways Forward

We plan on formally collecting these anecdotes from individuals who have
left the field as well as those remain to share with the community. We will
also develop a set of suggestions and guidelines for future software UI/UX and
culture that can contribute to more efficient analyses and a more supportive
and inclusive environment for analysts.



