
Snowmass2021 - Letter of Interest

IceCube and IceCube-Gen2 User Analysis Computing

Thematic Areas: (check all that apply �/�)
� (CompF1) Experimental Algorithm Parallelization
� (CompF2) Theoretical Calculations and Simulation
� (CompF3) Machine Learning
� (CompF4) Storage and processing resource access (Facility and Infrastructure R&D)
� (CompF5) End user analysis
� (CompF6) Quantum computing
� (CompF7) Reinterpretation and long-term preservation of data and code

Contact Information:
Kevin Meagher (University of Wisconsin–Madison) [kmeagher@icecube.wisc.edu],

Authors (alphabetical):
Kevin Meagher (University of Wisconsin–Madison) [kmeagher@icecube.wisc.edu],
Benedikt Riedel (University of Wisconsin–Madison) [briedel@icecube.wisc.edu],
David Schultz (University of Wisconsin–Madison) [dschultz@icecube.wisc.edu],
on behalf of the IceCube1 and IceCube-Gen22 Collaboration [analysis@icecube.wisc.edu]

Abstract: (must fit on this page)
The IceCube Neutrino Observatory is a km3 neutrino detector deployed at the South Pole. IceCube
measures neutrinos by detecting the optical Cherenkov photons produced in neutrino-nucleon in-
teractions. IceCube analyses span a wide variety of scientific topics, each of which places different
needs on computing. This letter of interest covers IceCube’s experiences with computing for end
user analysis and the issues we have faced. Topics discussed are programming languages, file
formats, computing hardware, and coding practices.

1Full author list available at https://icecube.wisc.edu/collaboration/authors/snowmass21_icecube
2Full author list available at https://icecube.wisc.edu/collaboration/authors/snowmass21_icecube-gen2

1

mailto:kmeagher@icecube.wisc.edu
mailto:kmeagher@icecube.wisc.edu
mailto:briedel@icecube.wisc.edu
mailto:dschultz@icecube.wisc.edu
mailto:analysis@icecube.wisc.edu
https://icecube.wisc.edu/collaboration/authors/snowmass21_icecube
https://icecube.wisc.edu/collaboration/authors/snowmass21_icecube-gen2


The IceCube Neutrino Observatory [1], located at the South Pole, instruments a cubic kilometer
of Antarctic ice. IceCube uses 5160 digital optical modules (DOMs) arranged on 86 strings in a
hexagonal array to detect Cherenkov radiation from relativistic charged particles emitted during
neutrino interactions. This configuration can detect neutrinos as high as EeV energies while the
center, more concentrated region of DOMs, called DeepCore, is optimized to extend the detection
energy down to a GeV. The IceCube Upgrade plans to improve on the resolution of GeV neutrinos
by adding an additional seven strings concentrated around DeepCore with varying DOM designs
and additional calibration devices [2]. To improve resolution of TeV to EeV neutrino detection and
increase the detection rate, Gen2 will add 120 strings to instrument a total volume of 7.9 km3 [3].
These extensions will increase the data rate and complexity, increasing the scale of user analysis
computing and challenges for individual end users.

Programming Languages

In IceCube, most analysis software is written in Python. Analysers find Python to be a very ex-
pressive language which makes it easy to develop detailed analyses. Our experience is that it is
easy to read and understand python code written by others, which is important for avoiding the
pitfall of relying on black box algorithms. Although Python is often criticized as slow for com-
putational work, this only applies to algorithms written in pure Python. When numpy is used
for computational work, speeds comparable to compiled languages can be achieved. In addition,
analysers generally find numpy’s vector arithmetic and splicing syntax to be a very intuitive and
easy way to work with data.

Python comes with a number of scientific packages which are extremely useful for analysis
software: scipy for mathematical and scientific routines, matplotlib for plotting, and pandas for
data processing. Python is also the preferred language for many machine learning frameworks, in-
cluding scikit-learn and tensorflow. Jupyter notebooks provide an interactive environment which
many find appealing. For algorithms which cannot easily be vectorized using numpy, an exten-
sion module can be written in C/C++. One of IceCube’s analysis libraries, csky, makes extensive
use of extension modules for a significant speed up while allowing the analyser to call the algo-
rithms from Python.

Even thought most analysers seem to prefer Python, ROOT is also used as an analysis environ-
ment by some users. Use of ROOT is generally unpopular because of the relatively cumbersome
installation process, and because of difficulty accessing data in a columnar format. ROOT data
structures such TTree have a niche syntax that students and other novice users find difficult to
navigate.

File Formats

IceCube analysers use a variety of file formats for storing the final level sample. No one format has
been found to satisfy all analysers. Icecube uses a custom file format for processing and storage
of low level data called “i3”. Because this format serializes entire events, random access of events
is difficult and the i3 format is not a good choice for final level data samples. To convert data
into more appropriate formats, IceCube’s software has a converter to convert i3 data into various
table-based data formats.

The most common formats used are HDF5, numpy, and ROOT. Data are often accessed in a
columnar fashion, and HDF5 has a Python interface in which columnar access follows numpy
conventions. This makes accessing data easy, but has some drawbacks. The format is not stored
on disk in columnar format so the whole table must be read into memory, which can be a limitation
for large datasets. The numpy format, in contrast, is a very simple format and is very fast to read,
but it can only store a single table and has no metadata, which makes long term storage of analysis

2



events difficult. ROOT files are typically only used in analyses written in ROOT. ROOT does not allow
simple columnar access to data and many find installing the entire ROOT library burdensome to
access a file format.

Analysis Computing

The amount of computational resources for IceCube analyses varies widely from analysis to anal-
ysis. Some have relatively trivial hardware requirements while others take a significant amount
of CPU and memory usage. Generally, analysers have found IceCube’s main computing cluster
at University of Wisconsin–Madison (roughly 6000 CPUs, 200 GPUs, and 3 PB of user storage)
adequate to meet the demands of analyses which require high CPU usage. However, many of our
analyses depend on algorithms which require memory allocations which exceed 64GB of memory.
Although workarounds exist, high memory computing resources would be beneficial.

Current analysis computing is done in a fairly traditional manner by using ssh to access in-
teractive and batch systems. In the future, we are looking towards JupyterLab web-based access.
Many analysers already use private Jupyter Notebooks [4] for smaller work, and this would be the
next step in providing a central, supported installation. There has been some community work in
extending these notebooks to cluster computing via Dask, which we are considering to adopt.

Code Best Practices

IceCube has found that it is very important to understand the structure of analysis code. Many
IceCube analyses are based on the method of maximum likelihood[5, 6] and use the same or sim-
ilar algorithms to maximize the likelihood, perform pseudo-experiments to determine the back-
ground likelihood distribution, and calculate the sensitivity and discovery potential. However,
many parts of these analysis differ such as the event sample, the definition and parameters of the
likelihoods and the method of scrambling background data. We found that taking the time to un-
derstand the structure of the code and refactor it into a library where new analysers could quickly
assemble provided components into a new analysis was highly beneficial. IceCube plans to con-
tinue to refine our analysis software and develop it into an modular and easy to use framework[7].

Reproduciblity of analysis code is also a major concern for IceCube. Significant effort has been
invested to ensure that published results can be reproduced with newer versions of software.
When new algorithms are developed, the older version is available as an option, so that new
versions of software can reproduce published analyses exactly, and all changes between analyses
are well understood.

Most graduate students, even ones with coding experience, are not well versed in the best
practices of software development. It is important that every analysis performed by our collab-
oration be incorporated into analysis libraries. In the absence of clear guidance, most analysers
are not interested in (or are too inexperienced or time-constrained) to do the work of incorporat-
ing any changes developed back into the main branch of the analysis library. We found that it
is highly beneficial to create a development community to teach analysers how to commit their
changes back into the main development branch.

3



References
[1] M. G. Aartsen et al. The IceCube Neutrino Observatory: Instrumentation and Online Systems.

JINST, 12(03):P03012, 2017.

[2] Aya Ishihara. The IceCube Upgrade – Design and Science Goals. PoS, ICRC2019:1031, 2020.

[3] M.G. Aartsen et al. IceCube-Gen2: The Window to the Extreme Universe. 8 2020.

[4] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Busson-
nier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov,
Damián Avila, Safia Abdalla, and Carol Willing. Jupyter notebooks – a publishing format for
reproducible computational workflows. In F. Loizides and B. Schmidt, editors, Positioning and
Power in Academic Publishing: Players, Agents and Agendas, pages 87 – 90. IOS Press, 2016.

[5] Jim Braun, Jon Dumm, Francesco De Palma, Chad Finley, Albrecht Karle, and Teresa Mon-
taruli. Methods for point source analysis in high energy neutrino telescopes. Astroparticle
Physics, 29(4):299–305, May 2008.

[6] Jim Braun, Mike Baker, Jon Dumm, Chad Finley, Albrecht Karle, and Teresa Montaruli. Time-
dependent point source search methods in high energy neutrino astronomy. Astroparticle
Physics, 33(3):175–181, April 2010.

[7] M. Wolf. SkyLLH - A generalized Python-based tool for log-likelihood analyses in multi-
messenger astronomy. In 36th International Cosmic Ray Conference (ICRC2019), volume 36 of
International Cosmic Ray Conference, page 1035, July 2019.

R–1


