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Quantum networks of quantum computers and quantum sensors promise to yield new capabilities to simulate
and test fundamental theories of nature, in addition to unprecedented network security, connectivity and modal-
ity. In particular, nontrivial demonstrator experiments to explore new physics are within reach during the next
decade. In the near-term, we advocate for further theoretical development and testbeds to evaluate the feasibility
and impact of potential experiments and discuss some key considerations.

Today’s global distributed High Energy Physics Commu-
nity depends on communications networks to share ideas, data
and experimental facilities. Metcalfe’s law attempts to quan-
tify the value of such classical networks in stating that their
value scales as the square of the number of connected nodes.
Given the possibility of multi-node entanglement, it seems
likely that the value of quantum networks will scale more fa-
vorably than classical networks, potentially yielding up to an
exponential advantage and unprecedented connection modal-
ities such as quantum sensor-computer links. If so, quantum
networks of devices could dramatically increase their value
compared to classical networked quantum devices, even for
relatively modest quantum networks. Some application ex-
amples which have been suggested include the networking of
telescopes [1, 2], and clocks [3, 4].

A major scientific challenge is to realize quantum net-
works of quantum devices to test scientific theories that are
intractable with current techniques, and integrate them into
existing extensive network infrastructures, for example, using
integrative testbeds [5–7]. These networked quantum devices
could perform computing, sensing, or a combination of com-
puting and sensing (for example, distributed decision mak-
ing to threshold interesting events). As quantum computing is
considered elsewhere, for example, in [8], here we will con-
sider quantum networks for science [9] in support of quantum
sensing for high energy physics [10].

The physical size of potential quantum networks span many
orders of magnitude, from chip-scale devices designed to
test for micro-scale effects, to geosynchronous satellite net-
works. Depending on scale, these networks may be connected
through combinations of on-chip wave guides, fiber optical,
and free-space optical channels. Regardless of scale, subdi-
vision of quantum sensor networks into smaller sub networks
may give one the capability of determining interaction lengths
and/or energy scaling of observed effects and how they prop-
agate through the larger sensor network.

Due to an effect’s propagation time, the physical size of the
quantum network can be important for tests of new physics,
for example, in gravitational wave detection. While the dis-
tance is an important consideration, the overall experimen-
tal transmission loss must also be considered as the quantum

communications capacity is limited by the loss, forming fun-
damental quantum communications bounds [11]. This trade
off was first discovered for quantum key distribution [12] and
later generalized [11]. It may be important to consider this
bound when considering the required network’s size and the
minimum resolvable signal relative to background noise.

To exceed the bounds developed in [11, 12], one needs
quantum repeater technologies to enable “high-performance”
quantum networks. One goal of the most advanced quantum
repeater concepts is the fault-tolerant transmission of quantum
information, where one can theoretically correct for both loss
and imperfect quantum operations [13]. The development of
a quantum repeater technology that enables continental-scale
quantum network connectivity is an unsolved challenge which
may not be ready for deployment in the next decade. As a re-
sult, initial demonstrator experiments to test new high energy
physics should focus on repeater-less networks but, should be
conceived in such a way that they can be scaled when quantum
repeaters become available.

In addition to physical size and loss, another consideration
is the energy scale to be sensed relative to quantum resources
needed for networking. Free space and fiber optical carriers
typically range from 3 eV to ∼0.75 eV of energy. In the case
of a mismatch between a sensor’s native energy scale and an
optical carrier, it may be necessary to carry out an additional
step of quantum transduction or quantum frequency conver-
sion, which may need to be developed.

With these considerations in mind, collaboration between
theorists and experimentalists who are subject matter experts
in high energy physics, quantum sensors and quantum net-
works is critical to developing previously inaccessible tests
of fundamental physics. Further concepts need to be de-
veloped showing that a quantum network enabled advantage
is possible for quantum technology in the next decade, not
only for relevant energy scales but also for relevant distance
scales. This should be done with the goal of testing parameter
regimes which are not tractable via conventional techniques.

We now describe some specifics related to quantum sensor
networks. Holtfrerich et al. [14] is unique in that it trans-
mits quantum correlations through distant plasmons on inde-
pendent substrates, an example of a small quantum network.
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FIG. 1. A six node fully interconnected Hamiltonian graph repre-
senting a GHZ state. The nodes are optical modes while the edges
represent the entangling interaction.

Quantum optical networks are collections of physically sepa-
rated optical modes related by a generalization of two-mode
squeezing. In particular, quantum networks take advantage of
the entanglement that two-mode squeezed states naturally ex-
hibit. For globally distributed signals which affect multiple
nodes that are entangled, networked quantum sensors present
an advantage over averaging independent sensors [15]. For
this reason, networks of quantum sensors have been proposed
as a natural way to obtain the Heisenberg limit in sensing,
where noise scales inversely with the number of nodes on
the network. Several types of quantum networks are pos-
sible, depending on the nature of the entanglement. Here,
we describe two general networks. The first network type is
called a Hamiltonian graph [16]. The simplest implementa-
tion consists of a two-mode squeezed state with maximum
squeezing. This configuration, also known as an Einstein-
Podolsky-Rosen (EPR) state [17], is a maximally entangled
state. Hamiltonian graphs that are fully interconnected with
equal weights describe Greenberger-Horne-Zeilinger (GHZ)
states. In this case, the interaction between two fields, form-
ing the edge of the graph, is given by e−ih̄χi j(a

†
i a†

j−aia j).
The equations of motion for the network in the Heisenberg

picture can be written in matrix form:

Ȧ = κκκ ·A†, (1)

where κκκ = κ

(
0 1
1 0

)
for example, for two modes. Here κκκ is an

adjacency matrix. This network can easily be generalized to
more than two modes by considering concurrent interactions
between n modes in the network:

H = ih̄
n

∑
i=1

n

∑
j 6=i

κi j
(
ai

†a j
†−aia j

)
. (2)

The above Hamiltonian implies that all optical fields interact
with specific strengths with all other fields in the network. For
instance, six fields have a graph as shown in Fig. 1. Any con-
nectivity can be represented by tuning the adjacency matrix,
which amounts to specifying a new Hamiltonian.

Another useful network type is called a cluster graph. In
this network, the edges represent different interactions, known
as quantum nondemolition operators [18, 19]. The edges in a
cluster graph are defined by eih̄(χi jXiX j), where X and P are the
amplitude and phase quadratures of each node on the graph.

The nodes in the cluster graph represent each field after
a degenerate nonlinear interaction, which reduces the phase.

FIG. 2. Square cluster state graphs. The single tile (left) can be
repeated to achieve long range order (right).

That is, Pi→ 0. However, it is possible to represent the nodes
on a cluster graph as equivalent to those in the Hamiltonian
graph with a redefinition of the phase of a single field. An
example with long-range order is shown in Fig. 2.

For cluster states, a node’s phase depends on its neigh-
bors’ amplitudes, while neighboring amplitudes are indepen-
dent. The equations of motion yield solutions Xi (t)−Pj (t) =
e−κtPj (0) and Pi (t)−X j (t) = e−κtPi (0). Applying a Fourier
transform to one node of a cluster graph transforms it to a
Hamiltonian graph. Under X → P and P→−X we have

X1 (t)+X2 (t) = e−κtP2 (0) , (3)

P1 (t)−P2 (t) = e−κtP1 (0) . (4)

As t → ∞, Eqs. (3)-(4) are equivalent to EPR operators up
to an arbitrary, semantic, and local definition of quadrature
which has no effect on graph topology. This property is im-
portant because it allows one to generate the more tractable
network, and then adjust the measurements to produce either
a GHZ state or a cluster state, depending on the application.

Multimode squeezing can be used to produce a network as
shown in Fig. 2. Extending squeezing measurements to more
than two modes is straightforward. For example, the GHZ
state, which is a maximally entangled state, shows quantum
noise reduction for specific quantum operators found by diag-
onalizing the adjacency matrix κκκ . For a k-mode GHZ state,
the squeezed operators are

(k−1)X1−
k

∑
i=2

Xi, (5)

k

∑
i=1

Pi. (6)

Thus, a signal to noise advantage for a distributed phase signal
could be obtained by joint phase sum measurements.

In the case of multimode squeezed spin networks, this mea-
surement scheme is optimal [20]. In the same way that two
mode squeezed states use a reference which shares correla-
tions with the signal beam, quantum networks can maintain
large portions of the network as references (half of the nodes,
for example, while half or more transduce a global signal).
With these ideas in mind, we see that quantum networked
sensing is a straight forward extension of sensing with two
mode squeezed states, and indeed the latter is a simple form
of a quantum network. This realization provides a plausible
path forward to the next generation of quantum sensing: mul-
timode quantum noise reduction distributed across a network
topology.



3

[1] D. Gottesman, T. Jennewein, and S. Croke, Physical Review
Letters 109, 070503 (2012).

[2] E. T. Khabiboulline, J. Borregaard, K. De Greve, and M. D.
Lukin, Physical Review Letters 123, 070504 (2019).

[3] P. Komar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen,
J. Ye, and M. D. Lukin, Nature Physics 10, 582 (2014).
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