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Over the last decade quantum algorithms for quantum simulation of electronic struc-
ture have become accepted as the most promising early application of quantum comput-
ing. They form a major focus of both Google and IBMs commercial efforts to construct a
medium-scale quantum computer. The refinement of these algorithms has involved the
development of numerous new quantum algorithmic techniques and small-scale exper-
imental demonstrations in various quantum computing hardware platforms. Quantum
algorithms for HEP problems, including algorithms for the simulation of quantum field
theory, remain in a more nascent state. The algorithms proposed to date require many
more error-corrected qubits than are likely to be available in the foreseeable future [6].

Can the ideas explored for quantum chemistry over the last 10 years be used or adapted
to reduce the resource requirements for simulating QFT? Fortunately we can be guided by
Wilson, who noted the possibly fruitful relationship between computational approaches
to chemistry and gauge theory in 1990 [13]. The use of compact basis function representa-
tions in chemistry contrasts strongly with the use of lattice regulators for QCD [3]. Wilson
proposed that the light front basis [4, 12, 2, 10, 1] could provide the right formulation for
such a basis function approach.

Some of us recently investigated this idea as a route to use optimal quantum simu-
lation methods for the simulation of quantum field theories in the light front [7]. We
investigated in detail a simple example in 1 + 1 dimensions containing coupled fermion
and scalar fields [9]. We developed an algorithm which is optimal in both qubits and
gates, where by ’optimal’ we mean asymptotic scaling in momentum cutoffs, Hamilto-
nian sparsity, Hamiltonian norm, and error. This allowed us to significantly reduce the
necessary computational resources as compared with the space-time lattices used in [6].

The algorithms proposed in [7] require a fault tolerant quantum computer for their
implementation. Quantities that may be computed include the parton distribution func-
tions (PDFs) of composite particles. The advantage of using the light front is that the
qubit requirements are reduced by around two orders of magnitude [7]. This means that
the quantum computer required is comparable in logical qubit requirements to that for
Shor’s algorithm. Such machines have been the subject of serious engineering studies [5].

The light-front also allows us to map problems in HEP and NP to noisy intermediate
scale quantum (NISQ) devices. This is the topic on which some of us are currently work-
ing [8]. The basis light-front approach [11] allows us to reduce the quantum resources
required for calculations to those suitable for the current era of NISQ devices, indeed
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we have already performed some example calculations using the IBM quantum comput-
ers [8].

Summary: The light-front approach is a very promising avenue for developing appli-
cations of quantum computers to quantum field theory, enabling one to get most of the
available quantum-computational resources. Such computations may be performed on
either NISQ devices or future fault-tolerant quantum computers.
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