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The High-Luminosity LHC (HL-LHC) [1] is expected to deliver 5 to 7 times the nominal instantaneous lumi-
nosity of the LHC. While this upgrade has its many advantages, e.g. a larger proton-proton dataset permitting
more precise measurements, numerous hardware- and software-based innovations will be necessary to withstand
the immense number of per-event particle multiplicities as a result of many simultaneous proton-proton collisions.
Given the finite computing resources available, processing the full dataset therefore poses a serious challenge for
existing event reconstruction methods. However, the field of quantum information science and computation have
been rapidly evolving in recent years, and show potential for unparalleled computing capabilities over classical
machines for special classes of problems [2]. It is pivotal (and natural) that high energy physics (HEP) experi-
mentalists and theorists get in on the ground floor to begin exploring the potential of quantum computation, specifically.

The application of quantum technologies to HEP applications is a new and challenging paradigm. Fortunately,
quantum computers are being made more available in labs and in the cloud [3–5], permitting prototyping in academia
and industry. On the other hand, current quantum computers have only a limited number of qubits and suffer from
destructive effects, namely quantum noise, or decoherence [6] – processes that corrupt the desired evolution of the
system and therefore result in a loss of information. As a result, reliable computation on quantum devices is difficult
due to low-fidelity unitary transformations (gates) acting on the qubits; the lack of a fully-connected system of qubits
could require additional gates, adding in quadrature to the overall noise of the computation. Furthermore, unlike their
classical counterparts, current quantum computing technologies cannot correct with high fidelity the errors that occur
in gate operations, and robust error-correcting (fault-tolerant) codes for quantum computers [7] are likely still years
away.1

This Letter of Interest proposes to explore the potential of quantum computation to improve the speed at which
proton-proton collisions can be reconstructed; in particular, quantum pattern recognition for charged-particle track
reconstruction. Initial algorithm implementations of track reconstruction rely on the fact that the whole calculation is
performed by running small computational pieces repeatedly. Each piece is thus represented by a fixed set of quantum
gates. However, this scheme generally leads to a situation where a same set of single- and two-qubit gates is applied
over and over again, hence being prone to errors that occur during unitary gate operations. An idea is to identify such
repeated gates commonly used in HEP applications to establish a path towards dedicated circuit design and hardware
implementation for HEP applications with as few gates as possible. This would improve performance by minimizing
the impact from noisy circuits.

The proposed research consists of two-step processes: 1) identification and implementation of available quantum
gates for use in track reconstruction; and 2) optimization of the gates for dedicated circuit designs.

For track reconstruction, an example of a potential approach using variational circuits is the Variational Quantum
Eigensolver (VQE) [12]. The VQE tries to find the lowest-cost state by applying different tunable parameters to
individual qubits. The optimization of dedicated circuit gates is based on decomposing the quantum gates into single-
and multi-qubit gates for merging. The mapping of merged gates to qubit layouts in existing hardware architecture is
performed by following an earlier study, e.g. [13].

Another method considered follows more closely classical track reconstruction: the Hough Transform [14, 15]. The
classical Hough Transform is a method of finding groups of collinear points in the coordinate space, by a mathematically
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equivalent problem of finding concurrent curves in the parameter space. Each input valve maps to a curve in the
parameter space and the accumulated values in this binned parameter space helps in finding the interesting patterns
by detecting local maxima. Due to it’s simple formulation and robustness against track overlaps and noise, it is an
excellent candidate for as a Noisy Intermediate Scale Quantum (NISQ) [16] algorithm. Detecting arbitrary shapes in a
dataset requires constructing a very large accumulator space for all parameters of interest. A quantum algorithm
for performing the Hough Transform can potentially provide exponential improvements in memory by representing
values in the accumulator space in a superposition quantum state. One of methods currently being developed uses
Grover-Long Algorithm [17], a variant of Grover search algorithm [18], that provides quadratic speed up in searching
the accumulator space for local maxima. By having close estimates of the ratio of the number of solutions M and the
searched space N , this algorithm renders success probability close to 100%. However, the current algorithm presents
strict constraints on the data that can be encoded in superposition. A potential improvement in quantum Hough
Transform would be to explore ways to efficiently encoding hit values obtained from the collision events directly as
superposition of quantum states while using Quantum Phase Estimation [19] to search for local maxima.

For gate optimization, several different approaches will be investigated, using available tools such as Qiskit’s [20]
transpiler passes and CQC t|ket〉 [21]. The first possibility is to decompose a circuit to a set of basis gates (e.g,
U1, U2, U3 and CNOT) supported by a given hardware. The circuits used for track reconstruction can be also
decomposed into a set of basis gates with rotation angles as parameters. After decomposition, all the CNOT gates
are extracted and mapped onto connected qubits in the target chip as much as possible. This is necessary to
minimize the use of SWAP gate, which requires several CNOT gates to implement and is hence expensive for quantum
computation. A method based on the minimization of cost functions will be considered; one cost function for
the circuit depth, and the other for the size of input states. The cost function for the depth is defined such that
the amount of SWAP gates can be minimized after mapping the CNOT gates. The cost function needs to take into
account actual connections on hardware chips, two-qubit error rates, mapping of SWAP gates, etc., and its definition is
subject to optimization. The cost function for the input size controls the number of qubits used and will need to be
minimized together with the circuit depth because more qubits could result in a shallow circuit but need more SWAP gates.

The expected outcome from the proposed research is an algorithm to optimize quantum gates for early HEP
applications and a design for possible hardware implementation. As the optimization method, we propose to decompose
the circuit for tracking into basis gates and merging them, including parameterized circuits. With this approach,
we will obtain an algorithm to optimize quantum gates for shallow circuits, being compatible with the present and
near-term NISQ devices.
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