Higgs Self-coupling Measurement at the FCC-ee with the Energy Recovery Linac

³ Nikhil Bacchawat,*Maria Chamizo-Llatas,[†]George Redlinger [‡]

July 29, 2020

Abstract

⁶ We propose to study the potential for measuring the Higgs tri-⁷ linear self-coupling with the Energy Recovery Linac (ERL) option at ⁸ FCC-ee. The ERL opens the possibility of running FCC-ee with a ⁹ center-of-mass energy up to 600 GeV with an integrated luminosity of ¹⁰ $5 ab^{-1}$ after 5 years of running. Studies will be done with simple detec-¹¹ tor parametrizations in DELPHES. The impact of beam polarization ¹² will also be studied.

13 1 Introduction

4

5

The detailed study of the Higgs sector of the Standard Model is one of the
primary goals of the HEP community in the coming years; in this context, a
measurement of the tri-linear Higgs self-coupling is of particular interest. [1]
A design for FCC-ee based on the usage of energy-recovery linacs (ERL)

¹⁷ A design for FCC-ee based on the usage of energy-recovery linacs (ERL) ¹⁸ has been proposed recently. [2] This option could potentially allow running ¹⁹ the machine at a center-of-mass energy of up to 600 GeV, opening the pos-²⁰ sibility of producing ZHH and ttH final states. An integrated luminosity ²¹ of 8.5 (5) ab^{-1} at $\sqrt{s} = 500(600)$ GeV after 5 years of running might be ²² possible.

^{*}Dept. of Physics, Stony Brook University

[†]Nuclear and Particle Physics Directorate, Brookhaven National Laboratory

[‡]Physics Department, Brookhaven National Laboratory

We propose to study the potential of such a machine for the measurement of the tri-linear Higgs self-coupling. A detailed study of the Higgs self-coupling in electron-positron colliders has been performed for the ILC, running at $\sqrt{s} = 500$ GeV. [3] We propose to build on this study by exploring potential improvements in jet clustering and pairing in the $HH \rightarrow 4b$ channel, and studying the signal-to-noise as a function of \sqrt{s} and as a function of the beam polarization possibilities at the ERL.

30 References

- ³¹ [1] R.K. Ellis et al. "Physics Briefing Book: Input for the European Strategy
- for Particle Physics Update 2020". In: (Oct. 2019). arXiv: 1910.11775
 [hep-ex].
- V.N. Litvinenko, T. Roser, and M. Chamizo-Llatas. "High-energy highluminosity e⁺e collider using energy-recovery linacs". In: *Phys. Lett. B* 804 (2020), p. 135394. DOI: 10.1016/j.physletb.2020.135394. arXiv: 1909.04437 [physics.acc-ph].
- [3] C.F. Duerig. "Measuring the Higgs Self-coupling at the International Linear Collider". PhD thesis. Hamburg: Hamburg U., 2016. DOI: 10.
 3204/PUBDB-2016-04283.