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ABSTRACT

One of the central goals of the physics program at the future colliders is to elucidate the origin of electroweak symmetry
breaking, including precision measurements of the Higgs sector. This includes a detailed study of Higgs boson pair production,
which can reveal the Higgs self-interaction strength. Since the discovery of the Higgs boson, a large campaign of measurements
of the properties of the Higgs boson has begun and many new ideas have emerged during the completion of this program.
One such idea is the use of highly boosted and merged hadronic decays of the Higgs boson (H → bb, H → WW → qqqq) with
machine learning methods to improve the signal-to-background discrimination. In this letter of interest, we champion the
use of these modes to boost the sensitivity of future collider physics programs to Higgs boson pair production and the Higgs
self-coupling.

1 Introduction
Observing the standard model (SM) production of two Higgs bosons (H) and precisely measuring the corresponding Higgs
self-coupling λ is a key goal of future colliders such as the high-luminosity LHC (HL-LHC) and Future Circular Collider
in hadron mode (FCC-hh). Current projections [1] achieve an expected significance of approximately 4.0σ from CMS and
ATLAS combined for the full HL-LHC data set. However, these projections do not include dedicated analyses of highly boosted
hadronic final states, which may be especially sensitive to the SM and anomalous Higgs self-couplings [2].

2 Boosted Higgs
In general, the hadronic final states are attractive because of their large branching fractions relative to other channels. While
the bbγγ “golden channel” has a 0.26% branching fraction, the bbbb and bbWW channels have a combined 58.8% branching
fraction, which often produce a fully hadronic final state. At low transverse momentum (pT), these final states are difficult to
disentangle from the background, but at high-pT, the decay products merge into a single jet, which new machine learning (ML)
methods can identify with exceptionally high accuracy. Even with a requirement on the pT of the Higgs boson, the hadronic final
states are still appealing in terms of signal acceptance. For example, the boosted bbbb (bbWW) channel with pT > 400 GeV
has X times (Y times) more signal events than the “golden” bbγγ channel at the LHC. Given the higher center-of-mass energy
of the FCC-hh, the boosted fraction would increase.

Based on preliminary investigations, these boosted channels may be competitive with the bbγγ channel (2.7σ expected
significance with the full ATLAS and CMS HL-LHC data set). As such, exploring these additional final states with new
methods will be crucial to achieving the best possible sensitivity to the Higgs self-coupling.

3 Machine Learning for Di-Higgs Searches
Emerging ML techniques, including convolutional neural networks (CNNs) and graph neural networks (GNNs), have enabled
better identification of these boosted Higgs boson jets while reducing the backgrounds [3–8]. CNNs treat the jet input data as
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either a list of particle properties or as an image. In the image representation case, CNNs leverage the symmetries of an image,
namely translation invariance, in their structure. Deeper CNNs are able to learn more abstract features of the input image in
order to classify them correctly. GNNs are also well-suited to these tasks because of their structure. GNNs treat the jet as an
unordered graph of interconnected constituents (nodes) and learn relationships between pairs of these connected nodes. These
relationships then update the features of the nodes in a message-passing [9] or edge convolution [10] step. Afterward, the
collective updated information of the graph nodes can be used to infer properties of the graph, such as whether it constitutes a
Higgs boson jet. In this way, GNNs learn pairwise relationships among particles and use this information to predict properties
of the jet.

Significantly, it has been shown that these ML methods can identify several classes of boosted jets better than previous
methods. For instance these methods have been used to search for highly boosted H(bb) [11] and VH(cc) [12] in CMS. We
intend to study the impact of the use of these ML algorithms in future colliders like the FCC-hh in a variety of boosted HH
final states, including bbbb, W(qq)W(qq)bb, W(qq)W(`ν)bb, and bbγγ . The study will cover the sensitivity of different jet
reconstruction algorithms in the previously mentioned final states. When estimating the signal sensitivity, we will need to
consider uncertainties on the signal efficiency, which may be constrained in data using a other SM processes as a proxy for the
signal. We will also investigate the implications of these experimental considerations on optimal analysis and detector design.
An important deliverable is to understand the sensitivity improvement from considering these channels on both the HH signal
strength and the self-coupling.

4 Outlook
Higgs pair production is a crucial process to characterize and measure precisely at future colliders. In order to do so with the
best precision possible, it is important to exploit all possible production and decay modes. This includes the high-pT hadronic
final states, whose sensitivity can be improved with ML methods. Quantifying the impact of these final states on the ultimate
sensitivity achievable (and how these considerations may impact optimal detector design) is the target of this study.
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