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With the discovery of the 125 GeV Higgs boson by Atlas and CMS [1–3] understanding the nature
of the Higgs and explaining the origin of electro-weak symmetry breaking is one of the outstanding
challenges for theoretical physics. However, so far experiments have not revealed any further guidance
and, up to the range of a few TeV, no direct signs for new physics have been observed [4, 5]. For
any theory aiming to describe the Higgs sector, this implies a large separation of scales is needed. A
large separation of scales occurs, e.g., in near-conformal gauge theories which might be the essential
building block to develop a theory describing physics beyond the Standard Model (BSM). The general
idea is to extend the Standard Model (SM) by a new, strongly interacting, and near-conformal gauge-
fermion system with massless fermions. The Higgs boson arises as a composite particle of this new
strong sector [6–9] and two general scenarios can be considered. Either the Higgs boson is a dilaton-
like particle (i.e. an iso-singlet scalar 0++ excitation) or a pseudo-Nambu–Goldstone boson (pNGB)
of the new strongly interacting sector. The latter scenario is quite similar to the pion in quantum
chromodynamics (QCD). In both cases quantum numbers and mass of the Higgs boson are expected to
match experimental determinations once all interactions with the Standard Model (SM) are accounted
for. Similarly the full theory has to pass electro-weak precision tests.

In the dilaton-like scenario, the new sector has ideally two massless flavors which give rise to three
Goldstone bosons and, similar to the original idea of technicolor, these three Goldstone bosons become
the longitudinal components of the electro-weak W± and Z0 bosons. The scale of the new sector is
fixed by relating the pseudoscalar decay constant of the new strong sector to the vacuum expectation
value of the SM i.e. Fps ∼ 246GeV. The alternative pNGB scenario requires at least three massless
flavors such that spontaneous breaking of the flavor symmetry creates pNGBs. Here the vacuum
alignment is nontrivial and the alignment parameter χ introduces an additional degree of freedom. An
example of a pNGB extension of the standard model is given by the two Higgs doublet model (2HDM)
discussed e.g. in Refs. [10–12].

Expressing the general idea of composite Higgs models in terms of Lagrangian, we add to the
Higgs-less SM LSM0 two terms. A Lagrangian of a new strong dynamics sector LSD accompanied by
a Lagrangian Lint to describes the interactions of SM particles with the new strong sector

LSM0 + LSD + Lint = LSM + new physics.

The latter includes a mechanism to provide mass to SM fermions via four-fermion interactions (see
[13] and references therein) or partial compositeness [14, 15]. All three terms together allow to deduce
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the SM, the Higgs boson, as well as “new physics” still to be experimentally discovered. To explore
the viability of composite Higgs models, we start out by considering the new strong sector LSD in
isolation. The strongly coupled nature of the new sector warrants to study LSD nonperturbatively
using techniques of lattice field theory. Near-conformal models are candidates to describe large scale
separation and have properties significantly different than QCD. Lattice calculations can identify the
general and particular properties of possible systems [16].

A promising candidate for such a near-conformal gauge-fermion system is e.g. an SU(3) gauge
theory with eight fundamental flavors [17–25]. Although a theory based on Nf = 8 flavors formally
gives rise to a very large number of Goldstone bosons (many more than needed for the dilaton-like
scenario), the thorough numerical investigations have triggered substantial attention. Most notably the
system contains a light iso-singlet scalar (0++) particle which is found to be as light as the pseudoscalar
and much lighter than the vector resonance in the investigated parameter range [22–25]. An important
step to extract firm conclusions from these findings for the Nf = 8 system is to identify the relevant
effective field theory (EFT) which incorporates the light scalar. Several candidate EFTs have been
proposed [26–30] but further numerical data are required to distinguish between candidate EFTs,
refine, and improve their description. In the future we therefore aim to improve our understanding of
the Nf = 8 system by pursuing high precision simulations using nHYP-smeared staggered fermions
[31] with well-characterized uncertainties. In addition to performing larger-scale lattice calculations
at smaller flavor masses in larger volumes, we will also calculate more observables in addition to the
particle spectrum and decay constants, considering e.g. two-particle scattering processes [32]. Despite
the large number of Goldstone bosons, the Nf = 8 theory has proved to be a simple test-bed to
explore near-conformal TeV-scale strong dynamics. It has and will teach us how to find a better UV
completion of the Higgs sector in the future.

Another particularly attractive alternative to identifying a near-conformal gauge theory is the
construction of a mass-split model [33–35] which live in the basin of attraction of a conformal infrared
fixed point (IRFP). Starting from a conformal system with Nf flavors, we choose four flavors to be
light (massless) such that the light sector is chirally broken. The remaining heavy flavors are “active”
and allow us to tune the system near the IRFP. Even though the low energy system is chirally broken,
its properties are significantly different from a QCD-like system. Due to the proximity of a nearby
IRFP, the system inherits conformal hyperscaling resulting in a highly predictive model [35]. Using a
setup with improved Möbius domain-wall fermions as well as taking advantage of locating the IRFP
for Nf = 10 [36], we presently explore a mass-split system with four light and six heavy flavors [37–39].
Our high-quality data enabled us to numerically test hyperscaling relations and, moreover, extend and
demonstrate the validity of dilaton chiral perturbation theory (dChPT) [27–30, 40, 41] to the case of
a mass-split system [39]. Since the mass of the heavy flavors is a continuously tuneable parameter (in
contrast to the integer number of flavors), mass-split models provide a superb framework to explore
near-conformal dynamics and determine phenomenologically relevant quantities like the S-parameter,
the Higgs potential, or scattering amplitudes. In addition reliably establishing that near-conformal
systems exhibit a light iso-singlet scalar is a top priority including a phase-shift calculation [42]. An
interesting variation of the mass-split model we presently study is to consider a system with 2 light
and eight or six heavy flavors which exhibits only three massless Goldstone bosons in the light sector.

Furthermore we are investigating the phase structure of the new strong sector in mass-split models.
Specifically we would like to establish whether the mass-split SU(3) gauge theory with four light and
six heavy flavors exhibits a first-order transition between its high-temperature plasma phase and
its low-temperature confined phase. This property is a natural feature of the theory rather than
being ‘inserted’ by hand. By performing numerical lattice calculations, we study this early-universe
confinement transition in order to predict features of the stochastic background of gravitational waves
it may have produced [43–45]. Our non-perturbative results will be needed to constrain (or discover)
new strong BSM dynamics from searches for stochastic gravitational waves at future observatories.
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