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We propose to leverage novel setups of Generative Adversarial Networks (GANs) [1] to
accelerate and broaden the progress in the understanding of the underlying dynamics of
parton showers in vacuum and their interactions with quark-gluon plasma created in
high-energy heavy ion collisions. The new methodology will enable comparisons of
measurements from the LHC (and RHIC) to various theoretical descriptions using full event
information. In addition, it will enable new experimental approaches by introducing novel
observables at future colliders (EIC and LHC).

The nuclear and heavy-ion physics contain a large volume of data that are difficult to
understand and model from first principles with today’s theoretical knowledge, e.g. containing
non-perturbative or many body dynamics [2-3]. Similar considerations can be made about
high-energy proton-proton collisions — in particular those generating high-particle
multiplicities. The application of novel artificial intelligence/machine learning (Al/ML) techniques
is attractive, both to automatically deduce and hypothesize new theoretical models, and also
develop novel observables not yet humanly envisioned. Moreover, our proposed approach
utilizing GANs accompanied by human understandable construction of the neural network
systems [4-5] may be used to other experiment-theory Monte Carlo feedback frameworks
allowing for rapid progress in understanding the underlying physics.
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