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Jet measurements at RHIC and the LHC have established that jets undergo significant 
modification in heavy-ion collisions relative to jets in proton-proton collisions (see Refs. 
[1-4] for representative examples). These modifications, referred to as jet quenching, 
offer a compelling avenue to investigate the emergence of a strongly coupled 
system, the quark-gluon plasma (QGP) [5-7], which is governed by interactions that are 
asymptotically weak (QCD). A variety of jet quenching observables have been studied 
in heavy-ion collisions, including the modifications of the inclusive jet and hadron yields, 
longitudinal and transverse profiles, coincidence rates, angular correlations, and jet 
substructure. Such measurements have been carried out using untagged jet 
populations; jets recoiling from jet, photon, Z, and hadron triggers; and heavy-flavor 
tagged jets. Studies of the jet substructure are notable, since this approach identifies 
quantities related to hard splittings in parton showers, with good theoretical control [8]. A 
comprehensive analysis of jet measurements is essential to constrain the nature of 
jet-medium interactions, including path-length dependence of jet quenching and color 
coherence effects, and thereby to elucidate emergent properties of QCD displayed by 
the QGP, such as the nature of the degrees of freedom of the QGP.  

In this LOI, we outline several avenues of future study that we believe are key for the 
advancement of the study of the quark-gluon plasma. This LOI relates primarily to the 
Energy Frontier Heavy Ions topical group [EF07], with secondary overlap with Precision 
QCD [EF05] and connections to the Computational Frontier. Moreover, these 
developments inform the growing field of jets at the EIC, and will influence detector 
design at the EIC and other upcoming facilities. 

Theoretical and experimental innovation 

● Development of jet substructure tools designed for the heavy-ion environment, 
including (i) Study of new jet grooming techniques [9,10,11,13, 23], (ii) New 
experimental techniques and background subtraction procedures to robustly and 
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precisely measure both groomed and ungroomed jet substructure observables at 
low jet momentum and/or at large jet resolution parameter [12,13] 

● Monte Carlo generator development (see Ref. [14,18] for recent examples)  
● Development of novel analytical frameworks to study jet observables in 

heavy-ion collisions (such as Refs. [15,16]) 
● Study the soft substructure of jets, such as Ref. [17,27], to enhance the 

sensitivity to medium effects and study hadronization in the QGP. 
● Development of jet observables to probe the space-time picture of the 

quark-gluon plasma (see Refs [24, 25] for first attempts in this direction) 
● Direct measurements of jet energy loss (see e.g. Ref [26]) 
● Accounting for the track-based nature of measurements in heavy-ion collisions in 

theory calculations [28-30] 

Community effort to confront theory and experiment 

● Global analyses that simultaneously fit multiple observables, and also improved 
reporting of systematic uncertainty by experiments, including correlations and 
potential non-Gaussian tails (see e.g. [18,16]) 

Profit from current and upcoming facilities 

● Exploit higher statistics and enhanced detector capabilities for rare probes such 
as heavy flavour and EW-tagged jets at LHC Run 3 and Run 4 [31] as well as 
future running at RHIC with sPHENIX [32] and STAR. 

● Measurements of jets in proton-nucleus and light-ion collisions at both RHIC and 
the LHC in order to understand the onset of jet modifications in the QGP. 

Exploration of new applications of innovative tools 

● Machine learning is a standard tool in HEP for classification, regression, and 
generation in jet physics. Its application to jet physics in heavy ion collisions has 
just begun (see Refs. [19,20]), and further exploration has great potential. 

● Quantum computing has been recently applied in nuclear physics and HEP (such 
as Refs. [21,22]). The exploration of such tools in the context of jet modification 
in heavy ion collisions may open a phase space for new research in theoretical 
approaches and experimental applications. 
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