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Abstract
Inspired by recent theoretical calculations [1, 2], we propose to measure γ γ → τ

+
τ
− using ul-

traperipheral heavy ion collisions at the LHC in order to probe the modified magnetic δaτ and
electric dipole moments δdτ of the τ lepton. More specifically, the anomalous magnetic moment
of the τ lepton, aτ = (gτ − 2)/2, lacks of a precise measurement since LEP even though it could
be sensitive to physics beyond the standard model. The ATLAS and CMS experiments can rely
on a suite of lepton (electron or muon) plus track(s) final states, taking full advantage of the
clean photon fusion γ γ → τ

+
τ
− events to reconstruct both leptonic and hadronic τ lepton de-

cays. With 5–10% systematic uncertainty, the current lead-lead data set should already provide
improved constraints, surpassing the 15 year old lepton collider precision by a significant factor
while paving the way to improved determination at LHC Runs 3 and 4 [3].

∗Electronic address: gkrintir@ku.edu
†Electronic address: mjmurray@ku.edu
‡Electronic address: muhammad.muhammad.alibordi@cern.ch
§Electronic address: Yuta.Takahashi@cern.ch
¶Electronic address: Stefanos.Leontsinis@cern.ch
∗∗Electronic address: ben.kilminster@physik.uzh.ch

1

mailto:gkrintir@ku.edu
mailto:mjmurray@ku.edu
mailto:muhammad.muhammad.alibordi@cern.ch
mailto:Yuta.Takahashi@cern.ch
mailto:Stefanos.Leontsinis@cern.ch
mailto:ben.kilminster@physik.uzh.ch


I. INTRODUCTION

Ultraperipheral (UPC) heavy ion collisions, where there is no hadronic interaction be-
tween the nuclei, provide a very clean environment to study various γγ -induced pro-
cesses. These reactions can also give rise to the production of τ lepton pairs. With this
Letter we highlight the importance of measuring, for the first time at LHC, the γγ → τ

+
τ
−

process using UPC and hence the anomalous magnetic (a
τ
) and electric (d

τ
) moments

of the τ lepton, pursuing further past considerations [4] and recent advances in theory
[1, 2]. The most stringent experimental constraints (95% CL) of −0.052 < a

τ
< 0.013 and

−0.22 (−0.25) < Re
[
d

τ

]
]
(

Im
[
d

τ

])
< 0.45 (0.08)× 10-16e cm come from DELPHI [5] and

BELLE [6] collaborations, respectively. We believe that the proposed measurement can be
already performed in the realm of the ATLAS [7] and CMS experiments [8], meaning fea-
sibility studies should answer how competitive to these results the determinations with
current or upcoming data sets at LHC are.

II. PROPOSED EVENT SELECTION

Selection of individual tracks from τ lepton decays with no other detector activity (e.g.,
low calorimetric energy deposit) is possible in the clean UPC events. To record γγ → τ

+
τ
−

events, dedicated single- and double-lepton triggers, with exceptionally low calorimeter
transverse energy deposit thresholds, are developed and already implemented [9–13].
With no other detector activity, the τ

+
τ
− system receives negligible transverse boost thus

the transverse momentum (pT) of the τ lepton reaches a few to tens of GeV at most.
ATLAS and CMS experiments are already exploiting advances in low-pT electron (e) [11,
13, 14], muon (µ) [9, 15], and τ [16] identification to efficiently reconstruct τ lepton decays,
as shown in Ref. [17] or in Fig. 1, and to suppress leptonic (γγ → `+`−, ` ∈ [e, µ]) and
hadronic (γγ → qq) backgrounds.

FIG. 1: Event display of a candidate γ γ → τ
+

τ
− event measured in PbPb UPC collisions [8]. The

event is interpreted as originating from the leptonic, τ → µνµντ , and hadronic, τ → π
±

π
∓

π
±

ντ ,
decay chains.
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III. EXPERIMENTAL AND THEORETICAL UNCERTAINTY

The leptonic background is dominated by back-to-back leptons and hence is sup-
pressed by a |∆φ`+`− | requirement. Track impact parameters exploiting displaced τ lep-
ton decays further suppress this background. The hadronic background is associated to
parton showering and so produces more tracks than τ lepton decays. It can be reduced
using lepton isolation and introducing a threshold on track multiplicity. Exchange of
digluon (gg) color singlets also contributes to the hadronic background, but can be ve-
toed by the Zero Degree Calorimeters since more neutrons are emitted in gg events than
pure QED processes.

Experimental systematic uncertainties from current UPC cross section measurements
in PbPb, e.g., gg → µ

+
µ
−, amount to about 10%, dominated by luminosity (though re-

cently updated [11]) and trigger efficiencies [9]. Lepton reconstruction can be controlled
using clean γγ → `+`− or gg → J/ψ, Υ events. Theoretical systematic uncertainties
are expected to be dominated by modeling of the photon flux, nuclear form factors and
nucleon dissociation. Fortunately, these initial state effects are independent of the QED
process and final state. So, we can use a control sample of γγ → `+`− events to con-
strain these universal nuclear systematics or eliminate them in an analysis of the ratio
σ(PbPb)

γ γ→ττ
/σ

(PbPb)
γ γ→`+`−

.
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FIG. 2: Summary of lepton anomalous magnetic moments a` = (g` − 2)/2. Existing single-
experiment measurements of ae , aµ , and aτ are in blue. The benchmark projections of Ref. [1] is
shown (green), assuming 2 (i.e., current data set at LHC) and 20 (i.e., close to the conjectured data
set at LHC Runs 3 and 4) nb−1 for two benchmark (5 and 10%) levels of systematic uncertainty. For
visual clarity, the 1σ error bars on ae (aµ) measurements by 109 (106), and 104 for the SM prediction
a

τ
pred (orange) are inflated. Collider constraints have thick (thin) lines denoting 68% CL, 1σ (95%

CL, ∼ 2σ). Some representative SMEFT prediction displays BSM at scales 140 < Λ < 250 GeV
(thick orange).

3



IV. PROPOSED ANALYSIS STRATEGY

We suggest following two methods: i) an absolute cross section measurement, and ii)
a shape analysis that is sensitive to interfering SM and BSM amplitudes to enhance a

τ

constraints. The strategy can also probe d
τ

induced by CP violating BSM physics.
Method (i) can discriminate between the derived predictions of Refs. [1, 2], based on

an effective field theory and first- principle approaches, respectively, that yielded signif-
icantly different inclusive cross sections. With method (ii) we can take advantage of the
differential cross section, e.g., the τ lepton pT, and its dependence on a

τ
. In particular, the

σ(PbPb)
γ γ→ττ

/σ
(PbPb)
γ γ→`+`−

ratio could prove to be a more sensitive probe of a
τ

since several sys-

tematic uncertainties, as previously described, cancel and the experimental knowledge
of ae and a

µ
is several orders of magnitude more precise than a

τ
itself.

We propose to build upon the existing knowledge, as summarized in Fig. 2, and carry
out more detailed Monte Carlo studies and realistic physics-object reconstruction effi-
ciency estimates.

V. SUMMARY

In this Letter, we suggest following the strategy recently suggested in Refs. [1, 2]. The
LHC cross section receives a Z4 enhancement (Z = 82 for Pb), with over one million
γγ → τ

+
τ
− events produced to date. With the current proposal we invite ATLAS and

CMS experiment to answer in more detail whether the currently available data sets of
the LHC experiments are already sufficient to improve the sensitivity on aτ by a multiple
factor since LEP, hence, we consider this analysis as highly interesting and worthwhile to
be performed taking into account further data sets in the future.
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