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ABSTRACT

Ultraperipheral collisions (UPCs) of heavy ions at RHIC and LHC offer great opportunities to study strong field QED,
EM/color charge fluctuations, collective phenomenon, electromagnetic properties of QGP, search BSM physics,
and explore 3D nuclear structure with high luminosity beams of linearly polarized photons from Lorentz-boosted
Coulomb field. Among these exciting directions of UPC studies, we select a few important new developments and
emphasize on the polarization dependent effects in photon-photon processes and photon-nuclear interactions,
and the processes as an electromagnetic probe of QGP properties.
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1 Photon-nucleus/nucleon interactions

1.1 Linearly polarized photon-gluon collisions
The diffractive photoproduction of vector mesons at RHIC and LHC can probe the gluon momentum and space
distribution inside nuclei and is the closest to the gluon imagining an electron-ion collider will perform in the near
future. The diffractive vector meson production in UPCs1–12 is the dominant channel of photon-nuclear interactions.
Recent experimental studies have probed nuclear effects such as gluon shadowing in an unprecedented way, but
more systematic studies are needed to address several open questions13–23. For example, there are still uncertainties
hindering the extraction of the gluon distribution at a quantative level due to the uncertainty of the photon source
generated by the heavy-ion Coulomb field, the separation of coherent diffractive production from the incoherent
process, and a model with matching precision on the data. One alternative is to address these aspects from a new
angle with the polarization dependent observables in UPCs. The significant cos2φ and cos4φ modulations in
diffractive ρ0 production have been reported by STAR collaboration24. A recent analysis25 shows that the cos2φ

asymmetry essentially results from the linearly polarization of incident coherent photons. The obtained transverse
momentum dependent cos2φ asymmetry has a distinctive diffractive pattern which is sensitive to the nuclear
geometry, the quantum interference effect26–28, and the production mechanism (coherent/incoherent). To reproduce
such a diffractive pattern, it is crucial to derive a joint impact parameter and transverse momentum dependent cross
sections, which is also important for reliably extracting the transverse spatial distribution of gluons inside a nucleus.
Similar measurements of azimuthal harmonic distributions of J/ψ at RHIC and LHC are feasible and will allow
more reliable comparison to the QCD calculations. In addition, more experimental measurements and theoretical
developments on the Fourier transformation of the gluon distribution with multiple azimuthal harmonics with the
linearly polarized photon as a probe are required.

1.2 Ultraperipheral pA collisions
The 3D gluonic tomography of a nucleon can be studied before the operation of EIC in ultraperipheral pA collisions,
where the photons generated from the Lorentz-boosted field from a nucleus interact with the gluons inside the
nucleon. It has been proposed to constrain the gluon Wigner distribution in a nucleon by measuring the exclusive
diffractive dijet production process in UPCs at RHIC, LHC29 as well as at EIC30–33. In particular, the elliptical gluon
Wigner distribution30 describing the correlation between b⊥ and the gluon transverse momentum can be accessed
via a cos2φ azimuthal asymmetry. An unexpectedly large cos2φ asymmetry in diffractive dijet production has been
observed in a recent measurement by the CMS collaboration34 in AA collisions, whose quantitative connection
to the elliptic gluon Wigner distribution requires further exploration. In addition to the nucleon 3D imaging, the
proton mass decomposition also can be addressed in ultraperipheral pA collisions35 similar to that in ep collisions36.
One of the most interesting contributions to the intrinsic proton mass is the trace anomaly, or the gluon condensate
contribution which can be probed via diffractive J/ψ production in ultraperipheral pA collisions where the nucleus
merely acts as a source of quasi-real photons. The challenge is that one has to detect J/ψ in the very forward,
low transverse momentum region. This may be possible after the forward upgrades at RHIC and LHC. A unique
capability to probe the generalized gluon distribution function (GPD Eg) with the collider mode at RHIC and the
fixed-target mode at the LHC is to use the polarized proton source in ultra-peripheral pA collisions37–39.

1.3 Photoproduction in non-UPC heavy-ion collisions
The ALICE Collaboration at the LHC has pioneered the experimental measurements of the photoproduction of J/ψ

at low transverse momentum in non-UPC heavy-ion collisions40, accompanying the more violent hadronic collisions.
More detailed study of the diffractive |t| distribution by the STAR Collaboration at RHIC41 has shown that the
|t| distribution is more consistent with the coherent process than the incoherent process. Although models42, 43

incorporating different partial coherent photon and nuclear interactions could explain the yields, it remains unclear
how the coherent process happens and whether final-state effects play any role44. Resolving this puzzle with high
statistics data and detailed |t| distributions at different centralities at RHIC and the LHC may be important for
understanding what defines the coherence of the photoproduction and how vector mesons are formed in the process.
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2 Photon-photon to dilepton process

2.1 Extreme QED field
It was perceived that photons participating in UPC events are quasi-real with transverse-momentum kt = 1/R (30
MeV/c) reflecting the virtuality and uncertainty principle of their origin. This led to the assumptions in models
employing the equivalent photon approximation (EPA)45–47 that the dilepton initial transverse momentum does not
depend on impact parameter and the transverse space coordinates where the pair are created are randomly distributed
based on the same principles. The new measurements of centrality dependence and azimuthal distributions at
RHIC1, 48–50 and LHC3, 51–54 have shown that the photons behave like real photons in all observables. The models
and theories have demonstrated that the correction to the real photon approximation is suppressed at the order of
1/γ2 even in the transverse momentum distribution of the pairs. The discovery of the Breit-Wheeler process and
the utilization of linearly polarized photons in UPCs are conceptually and experimentally highly nontrivial50. With
future high statistics data with larger acceptance in UPC at RHIC and LHC, we can explore the phase space of photon
collisions in transverse momentum, rapidity and momentum-space-spin correlations in extreme QED fields55, 56.
More importantly, these measurements provide a precision calibration necessary for the photons as sources for the
photonuclear processes discussed in the previous section.

The lowest order QED calculation45–47 of lepton pair production via photon-photon fusion process with the
EPA as the input for photon flux can describe the unpolarized cross section measured by RHIC and LHC49, 51, 53, 54

quite well. It was recently realized that the coherent photons are highly linearly polarized with the polarization
vector being parallel to its transverse momentum direction. A sizable cos4φ azimuthal asymmetry induced by
linearly polarized coherent photons was observed in a STAR measurement50. A remarkable agreement between
the computed asymmetry(16.5%)55, 57 and the measured asymmetry(16.8%±2.5%) in UPCs has been reached.
With it being experimentally confirmed, the linearly polarized photon beam in UPCs provides us a new tool to
estimate the off-shellness of the coherent photons participating in the Breit-Wheeler process and explore novel QCD
phenomenology.

The extreme EM field in UPCs also facilitates searches for the elusive Coulomb correction58–66. The total cross
section of lepton pair production in UPCs is predicted to be reduced by the Coulomb correction. However, there
is no clear evidence of the Coulomb correction found in heavy ion collisions so far65, 66. The multiple coherent
Coulomb rescattering is suppressed by the powers of q2

⊥/m2
ee. To maximally enhance the Coulomb correction,

pushing the measurement to the lower invariant mass region is required, which should be feasible at RHIC and
LHC with forward instrumentation. It would be even more optimal to study Coulomb correction via a polarization
dependent observable, for instance cos4φ asymmetry discussed above, which does not depend on the uncertainty of
the heavy ion beam luminosity.

2.2 Dileptons as a probe in heavy ion collisions:
The comprehensive understanding of pure electromagnetic lepton pair production is not only important for probing
extreme electromagnetic fields, but also interesting for studying the EM properties of QGP. For example, the
significant pair transverse momentum q⊥ broadening effect at different impact parameters found by the STAR49, 50,
ATLAS54 and CMS52 collaborations has triggered quite an amount of theoretical efforts aimed at understanding if
this effect results from the initial QED field strength, or is caused by the final state medium effect. The detailed
comparison between theory/model calculations and experimental data appears to be in favor of the initial state
effect46, 47, 56, 67, 68, though there is some room left for the final state effect, such as the trapped magnetic field69

and multiple EM scattering in QGP. Since such an impact-parameter sensitive observable is implicitly dependent
on the photon Wigner distribution, it can serve as a clean testing ground for developing the QCD factorization
formalism in terms of quark and gluon Wigner functions, which play a central role in exploring the 3D structure of
nucleons/nuclei in the forthcoming EIC era. Another interesting development along this line is the prediction of a
sizable v4 anisotropic distribution with respect to the reaction plane 70 in lepton pair production in non-central heavy
ion collisions. This EM v4 anisotropy is purely generated by the initial EM field configuration, while the EM v2
anisotropy is absent. This unique prediction, if confirmed from the experiments, shall provide a crucial handle on
the production mechanism for dileptons in two photon processes in non-UPC collisions.
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