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The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) [1,2] is a well-motivated
model for physics Beyond the Standard Model (BSM); it may not only solve the hierarchy problem of the
electroweak scale [3–7], but also solve the µ-problem [8] of the MSSM, alleviate the fine-tuning associated
with the 125 GeV Higgs boson and the tension implied by the current lack of evidence for superpartners
below the weak scale (see e.g. [9–12]), and provide a dark matter candidate [13–23].

The NMSSM augments the field content of the MSSM by a SM-singlet chiral superfield Ŝ; this extends
the particle content by singlet scalar and pseudo-scalar bosonsHS andAS, which mix with their correspond-
ing Higgs-doublet counterparts, and a singlet fermion, the singlino S̃, which mixes with the neutralinos. The
addition of these singlet states leads to relevant modifications of the NMSSM Higgs sector’s collider phe-
nomenology compared to the MSSM (or more general 2HDMs) [13,16,24–36]. After electroweak symmetry
breaking, the physical states are three neutral CP-even Higgs bosons (h125, h, and H), two neutral CP-odd
states (a and A), and one charged Higgs boson (H±). We identify h125 with the observed 125 GeV Higgs
boson, and order the remaining states by masses mh < mH , and ma < mA. In order to be compatible
with Higgs precision data [37,38], h125 must have mass mh125 ' 125 GeV and its couplings to pairs of SM
particles must be similar to those of the SM Higgs boson. In the NMSSM, there are two ways to achieve
SM-like couplings of h125: in the decoupling limit, the non-SM-like neutral Higgs scalars have masses much
larger than that of the observed SM-like Higgs boson, while in the alignment-without-decoupling limit [29],
the parameters of the theory conspire to suppress the mixing of the SM Higgs interaction eigenstate with
the non-SM-like neutral scalar interaction eigenstates. This latter alignment-without-decoupling limit is of
particular interest for phenomenology, since it does not require the mass of the non-SM-like Higgs bosons
to be large compared to the electroweak scale, and hence, they may be accessible at the LHC. We note that
Refs. [32, 36] demonstrated that, in random scans of the parameter space, requiring compatibility with the
phenomenology of the observed 125 GeV Higgs bosons selects the region of parameter space where the
alignment conditions are approximately satisfied, even in regions where one naı̈vely might have expected
the decoupling limit to suffice to realize a 125 GeV state with SM-like couplings.

The admixture of the singlet-interaction states HS and AS to the neutral mass eigenstates reduces their
direction production cross sections, since HS and AS do not directly couple to SM particles. On the other

1



g

g

Φi

Z

Φj

(a)

g

g

Φi

Φk

Φj

(b)

Figure 1: Illustration of di-boson decay processes. The Φi stand for any of the NMSSMS’s neutral Higgs
bosons. CP-conservation demands that for diagram (a) one of the states must be CP-even and the other one
CP-odd, e.g. (gg → A→ Zh) or (gg → H → Za). For diagram (b), either all three states must be CP-even,
e.g. (gg → H → hh125), or two of them must be CP-odd and one CP-even, e.g. (gg → A→ ah125).

hand, the presence of the additional states introduces new interactions and decay channels. In particular,
resonant di-boson production processes appear prominently [26, 27, 29–36], where a heavy Higgs decays
into two lighter Higgs bosons or a light Higgs and a Z boson as illustrated in Fig. 1. The trilinear couplings
corresponding to such decays are controlled by the SM gauge couplings and the dimensionless NMSSM
parameters λ and κ. In particular, the dimensionless coupling between the singlet and doublets, λ, takes
values λ ' 0.65 in the alignment limit. Due to these large couplings, if kinematically accessible, di-boson
decays will play a large role for the decay patterns of the non SM-like Higgs bosons in the NMSSM; typically
the branching ratios remain large,O(10 %), even if decays into pairs of top quarks are kinematically allowed.

While di-boson decays have been used extensively to search for BSM Higgs bosons at the LHC, the
experimental collaborations have focused their efforts on decays into two SM(-like) states, such as H →
h125h125 [39–57], H → ZZ [58–67], H → WW [68–76], and A → Zh125 [39, 77–80]. These decay
modes have the advantage of particles with known masses and branching ratios in the final state (i.e., Z, W ,
and h125), however, the corresponding branching ratios are suppressed by alignment. In general, alignment
(without decoupling) suppresses the trilinear coupling between two SM(-like) states and one non-SM-like
state [29, 35]. Instead, the trilinear couplings unsuppressed by alignment involve at least two non-SM-like
states. The most promising di-boson decay modes of the (non-SM-like) NMSSM Higgs bosons at the LHC
are (H → h125h), (H → Za), (A → h125a), and (A → Zh). While these channels are more challenging
than those relying on the decays ofH/A into two SM(-like) modes, the associated branching ratios are much
larger, and while they do involve states with unknown masses and branching ratios, the presence of one state
with known mass and decay patterns (Z or h125) makes it easier to identify such processes at colliders than
decays not involving SM-like states (such as H → hh, H → aa, and A→ ha).

The prospects for probing the NMSSM at the LHC using such di-boson decays has been explored in the
literature, see, for example, Refs. [13,16,24–33,36]. However, most of these studies focused on the potential
of one, or a few, particular channel(s) to probe certain parameter regions of the NMSSM parameter space.
Reference [36] took a first step towards a more comprehensive study, investigating how well the region of
NMSSM parameter space compatible with the phenomenology of the observed Higgs boson and featuring
new Higgs bosons with masses . 1 TeV could be explored in future LHC runs by combining conventional
search channels for BSM Higgs bosons (such as H/A → bb/ττ/ZZ) with these more NMSSM specific
di-boson channels [such as (H/A → h125h/a), (H/A → Za/h)]. However, Ref. [36] partially relied on
rather crude extrapolations of the future LHC sensitivity. Further work exploring the sensitivity of the LHC
or other future colliders to the NMSSM, and in particular, the complementarity between different search
channels, are highly motivated; we are planning to undertake such studies.
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