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Abstract: We present a summary of efforts to probe the mass range 16 − 41 µeV for dark matter halo
axions. Technological challenges in probes of this mass range are discussed, and some solutions outlined.
Solutions to some of these challenges are also of interest to communities involved in more general quantum
measurement, such as quantum information science. We outline the experimental challenges anticipated
when probing this mass range and summarize experimental efforts in which the authors plan to search this
mass range for axions in the next 5-10 years.

1



1 Introduction4

Axions, representing the potential solution of the 44-year-old strong CP Problem1, are a candidate of rapidly5

increasing interest in the quest to solve the 90-year-old dark matter problem2,3. QCD axions4 possess6

very faint couplings to ordinary matter. Search experiments achieving the requisite sensitivity exploit high-7

Q resonators, in which photons from Primakov conversion of axions drive modes of an electromagnetic8

resonator of volume V threaded by a static magnetic field B 5,6. When the frequency of a suitable cavity9

mode matches the axion energy, resonant enhancement boosts the otherwise undetectable signal power to10

of order yoctowatts, detectable with existing technology. In practice, the mode frequencies are tuned to11

probe a range of axion masses at a rate limited by the radiometer equation. Though the range of possible12

axion masses is many orders of magnitude, recent developments in lattice QCD7,8 predict ma in the range13

16− 41 µeV. Some post-inflation production string and domain wall models claim very precise predictions14

of ma also within this range9. This letter summarizes experimental issues relevant to searches for axions in15

this well-motivated range of masses.16

2 Magnets and Resonators17

Because the signal power is proportional to the magnetic field squared and volume, the first experiments18

optimized for both B2V and cost. The ADMX experiment currently uses a single cavity in a 220-liter,19

7-T solenoidal magnet. Its most recent experiments probe the DFSZ10,11 and KSVZ12,13 axion models in20

the range 2.6− 3.3 µeV14. The Haystac haloscope, operating a higher frequencies, uses a smaller volume,21

9-T solenoidal magnet. Its first results place limits on axions at about twice the KSVZ model power level22

for a 23.55− 24.0 µeV mass range. Probing much higher masses naturally leads to ever-decreasing cavity23

volumes, and hence less signal power. Several approaches to achieving higher sensitivity in this mass range24

are possible. First, arrays of small cavities power-combined can be tuned in-phase to achieve the required25

volume. This difficult technical task has been made tractable in the past decade through the development26

of cryogenic piezo crystal actuators. Second, a higher field magnet can be used at a smaller volume. De-27

velopments in magnet technologies now enable fields exceeding 30 T over suitable geometries, though such28

magnets are very costly15. An aspiration for the future would be funding for a large (order 1m bore) magnet29

with a high field (order 20-30 T), though such a magnet would itself be a major research and development30

project.31

3 Low Noise Receivers32

Improvements in low noise amplifier technology may mitigate some of the limitations of axion searches33

in this mass range. The advent of the Josephson Parametric Amplifier (JPA) has already enabled higher34

frequency axion searches14. The HAYSTAC experiment used a JPA in its 23.55–24.0 µeV run16. The most35

recent ADMX run also used a JPA to reach DFSZ10,11 sensitivity14. Traveling wave parametric amplifiers36

(TWPAs) may also prove beneficial in this frequency regime17. A major advantage of TWPAs is that they37

do not rely on a resonant structure and therefore provide gain over a wide bandwidth, reducing the need to38

tune the amplifier. They are also less sensitive to perturbations in the magnetic field. These features could39

help reduce some of the complexity that is inherent to multi-cavity systems that may be necessary in this40

frequency range. Such devices can provide a power gain of 20 dB over a bandwidth of 3 GHz17,18. Quantum41

linear amplifiers such as JPAs and TWPAs can achieve exceedingly low noise levels, but are constrained to42

operate above the standard quantum limit. HAYSTAC has recently used the enhancement from a squeezed43
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state receiver to double their search rate, setting a new limit in the region from 16.96–17.12 and 17.14–44

17.28 µeV19. Single photon counters, if feasible in this frequency range, would provide an alternative to45

quantum linear amplifiers that could radically change the landscape of possible experiments. In fact, there46

is reason to believe that for a least part of the 16− 41 µeV mass range, single photon detectors would be47

preferable to linear amplifiers20. There is some evidence that suggests this may be possible in the near48

future21. Single photon counters using Josephson Junctions have shown some promise22, but further studies49

are necessary before this technology can be fully implemented. An approach pioneered by the CARRACK50

collaboration23,24 coupled single photon detectors in the form of rubidium Rydberg atoms23,24 to an axion51

haloscope, excluding axions of mass ∼1.006× 10−5 eV at the level of the DFSZ model band. The continued52

investigation of Rydberg atoms as single-photon detectors is being undertaken at Johns Hopkins.53

4 Experiments and New Target Technologies54

Current and near-future ADMX operations will cover the mass range from 4.1 µeV to 16 µeV using multi-55

cavity arrays that fit within the confines of the existing ADMX magnet bore, or other readily available56

options. Going to higher masses requires either the use of a large number of smaller cavities, or a higher57

magnetic field, or both. A UK-based group collaborating with ADMX is now in a position to develop a58

two-pronged approach to cover this frequency range. First, they will collaborate with ADMX to append an59

additional receiver chain to the existing insert RF electronics. Second, it will also build a new UK-based60

high-field, high-volume, low-temperature facility for further axion and hidden sector searches in this mass61

range, in collaboration with ADMX. Another possibility means of scanning this regime is to run a cavity62

array without attempting to synchronize the resonant frequencies of all the cavities, instead combining the63

data from all the cavities running at different resonant frequencies to achieve equivalent sensitivity overall.64

This is the approach adopted in ORGAN25. A similar idea aims to fabricate cavities of varying dimensions65

coated in superconducting film operated high magnetic fields. Although operating superconducting cavities66

in high fields is a known technological challenge, there is a strong incentive to develop such technology for67

Quantum Information Science (QIS). Another recently proposed alternative approach is to use an external68

feedback loop incorporating a resonant circuit to induce artificial high Q resonances in an electromagnetic69

structure26. A potential advantage of this technique is that many resonances could be induced in parallel,70

resulting in a speed-up in the coverage of mass range by a factor of the number of resonances. Early tests of71

this approach are underway at ADMX. Above 41 µeV alternative detection schemes such as phased arrays of72

mirror reflectors as proposed by MADMAX27 or through coupling of higher mass QCD axions to fermionic73

spin as in QUAX28. However, between 16 µeV and 41 µeV, resonant structures in magnetic fields remain74

the only viable technology.75

5 Conclusion76

Axions remain one of the most compelling solutions to the dark matter and strong CP problem, with the77

16− 41 µeV mass range well-motivated by current theory. The outstanding experimental issue in this mass78

range is combining a large volume and 10− 40GHz resonant frequencies. We believe that this issue will79

be the prime focus of the experimental efforts in probing the 16− 41 µeV mass range. This work will80

also act as a catalyst for the additional development of quantum electronics at higher frequencies. Further81

advancements in JPAs and TWPAs will be accompanied by new detectors based on QUBIT arrays. Modern82

mechanically pre-cooled dilution refrigerators should greatly simplify the cryogenics of new apparatus. We83

look forward to the ever more sensitive searches, and to the long awaited discovery of axion dark matter.84
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