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Superconducting devices have a rich history in High Energy Physics (HEP). HEP scientists developed
the Transition Edge Sensor (TES) which has been deployed in WIMP Dark Matter searches1 (using hundreds
of TES on a large crystal in order to perform event reconstruction from athermal phonons) and measurements
of the Cosmic Microwave Background (e.g. the SPT-3G experiment2 utilizes a focal plane of over 10,000
CMB bolometers to search for signs of inflation in the polarization of the CMB). Another HEP application of
superconducting circuit technology is the ADMX experiment3 which uses a SQUID to amplify the potential
microwave signal produced from axion Dark Matter interacting with a magnetic field.

Because the typical energy scale for superconductivity is the gap energy, O(10−4) eV, detectors and
devices that exploit superconductivity are capable of measurements that are impossible using other tech-
nologies, which have characteristic energy scales of O(1) eV. Superconducting detectors and devices are
especially well suited to applications where the signal is rare or faint making sensitivity critical. Looking
towards the future, superconducting detectors, devices and circuits will continue to play a critical role across
a number of HEP science thrusts. Examples include:

• Cosmological studies of the early universe: the CMB-S4 experiment will require ∼500k TES detec-
tors (an order of magnitude more than previous experiments)4 and cosmic surveys using Line Intensity
Mapping techniques will utilize KIDs

• Searches for low-mass Dark Matter particles: superconducting nanowire single photon detectors
(SNSPDs) with sub-eV threshold are being explored for direct detection of sub-GeV Dark Matter,5

and low threshold TES detectors for calorimetric measurements of photons, light, heat, and or evapo-
rated Helium atoms are being developed for light Dark Matter particle searches6–8

• Searches for Axion Dark Matter: superconducting qubits are being used in connection with RF
cavities to search for axion Dark Matter,9 and THz-photon counting kinetic inductance detectors
(KID) in conjunction with quantum readout techniques are proposed to look for wide band axion
Dark Matter detection10

• Neutrinos: low threshold TES detectors are being developed for use as light detectors for background
discrimination in neutrino-less double beta decay searches11 and as thermistors for calorimetric mea-
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surement of Coherent Elastic Neutrino Nucleus Scattering using dielectric or superconducting crys-
tals12

HEP experiments utilizing superconducting detectors and devices require the custom creation of com-
plex detectors integrated into specific experiment configurations. Challenges are associated with fabricating
these complex integrated devices while maintaining the required control of the underlying materials prop-
erties. Some technical goals are realizing lower detection thresholds, larger collecting areas, and increased
integration of detector components. For example, ultra-low threshold detectors require superconductors with
low transition temperatures (approaching 10 mK). There are few options for elemental superconductors in
this range, but many techniques (superconducting - normal metal bilayers, magnetic doping, etc) can be
used to custom tune the transition temperature to the desired value. Large collecting areas require the use of
either large arrays of small detectors (e.g. using SQUID multiplexers or the inherent frequency multiplexing
of KIDs) or large collecting structures to trap the signal of interest and funnel it to the detector. KID-based
on chip spectrometers for LIM will combine spectrometer, detector, and readout components on a single
chip, requiring processes with multiple layers of diverse materials with well managed interfaces.

A Superconducting Detector Facility would provide an important capability for advancing the types
of superconducting technologies discussed above. Such a facility would have a large spectrum of well-
controlled and dedicated tools for thin film synthesis and processing together with multiple methods for
superconducting materials characterization.
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