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Abstract:  
  

Similarities are often present in low-energy background spectra of ultrasensitive detectors for  

dark matter particles or CEvNS low energy neutrinos. The energies in these backgrounds are 

above thermal noise, and self- shielding prevents low energy electrons or gammas to penetrate; 

low-angle Compton scattering or low-energy Beta impurities would provide a flat background 

spectrum at low energies, while background event rates have been observed to increase toward 

low energies. This leads to the question of what underlying mechanism gives rise to such 

background shapes. We hypothesize the scenario in which low level energy accumulates over 

time and then manifests in an avalanche which releases this energy in the material. This is 

potentially an example of self-organized criticality, but the process lacks universal scaling, so 

each material requires studying the involved excitations and interactions. This mechanism for 

low-energy noise is cross-cutting, affecting a variety of detector types including noble-elements 

and solid-state detectors, photon and quantum sensors. As a result, several distinct fields could 

benefit from investigations of these dynamics which could lead to suppression strategies. We 

predict significant sensitivity improvements and new possibilities to study SOC-like dynamic in 

Superconducting Nanowire Single Photon Detectors (SNSPDs).   
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Proposed avenue of study 

 

Superconducting Nanowire Single Photon Detectors (SNSPDs) demonstrate remarkable progress 

in recent years- currently they are among the fastest photon counters (~10 picosecond 

timing),  have low energy detection threshold (10 μm wavelength photon detection) and have 

low dark count rates.  At the same time microscopic model of operation of these detectors 

remains unclear.   

 

When a SNSPD detector is waiting for an event (photon producing energetic quasi-particles in 

nanowire with superconducting current), no dissipation or energy production takes place in the 

detector material, so SOC-type dynamic should be absent or strongly suppressed. This opens the 

possibility to introduce some low energy influx into materials (at frequencies below 

superconducting gap) to study both appearance of SOC dynamics, density of sub-gap states and 

effects of populating these states on energy sensitivity and dark counts of these detectors.  

 

While there has been tremendous work building SNSPD arrays with improved energy sensitivity 

of individual detectors, no attempts have been done so far to detect hot phonons with 

these detectors. Also, while most of the materials used for SNSPDs have low carrier 

concentrations, and thus the electron concentrations in thin films of these materials can be 

manipulated by strong electric field, no such experiments have been done in this direction either. 

This situation is partially due to the lack of understanding of the processes in SNSPDs. But 

studying of effects of hot phonons (produced by particles bombarding the SNSPD’s substrates) 

and effects of in-situ changing electron concentration by electrostatic field can provide new clues 

for understand microscopic processes in the detector.   

  

LLNL is interested in detection of hot phonons as this can lead to new techniques for CEvNS 

detection as well as for light dark matter particles detection.  Suppression of superconductivity 

by strong electrostatic fields can be used to push photon detection threshold to longer 

wavelength, which is of interest to LLNL in connection with searches for axion dark matter.   
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