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Self-driving data trigger, filtering, and acquisition
systems for high-throughput physics facilities
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Abstract:
Data-intensive physics facilities are increasingly reliant on real-time processing capabilities and machine learning

workflows, in order to filter and analyze the extreme volumes of data being collected. This is especially true at the
energy and intensity frontiers of particle physics where bandwidths of raw data can exceed 100 Tb/s of heterogeneous,
high-dimensional data sourced from >300M individual sensors. Data triggering and filtering algorithms targeted at
the discovery science performed at future facilities must operate at the level of 1 part in 105. Once executed, these
algorithms drive the data curation process, funneling event records with certain features into categories that are
predefined based on the labels extracted by the trigger algorithms. The design, implementation, monitoring, and
usage of these trigger algorithms is very high-dimensional, resource-intensive, and can include significant blindspots.
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This Letter of Interest aims to express the need to investigate the concept of a self-driving trigger system that is able to
learn the hyper-dimensional space of data that are processed – and potentially discarded – and thereby autonomously
and continuously learn to more efficiently and effectively select, filter, and process data from a particular facility.
This concept has the potential to not only increase the performance of such systems, but also to increase discovery
potential by moving beyond previous paradigms of fixed menus of carefully hand-curated data.

Letter of Interest:

Data filtering algorithms – so-called trigger algorithms – targeted at discovery science (e.g. identification of a
data event containing evidence of dark matter produced at the Large Hadron Collider) – must operate at the level of 1
part in 105 due to numerous bandwidth, compute, and storage-related constraints. Once executed, these algorithms
often drive the data curation process, funneling event records with certain features into categories that are predefined
based on the labels extracted by those algorithms. The design, implementation, monitoring, and usage of these
trigger algorithms is resource-intensive and can include significant blindspots, in part because the menu of trigger
algorithms is manually designed based on domain knowledge [13]. Although discovery science has been based
on this approach for decades, those observations relied heavily on excellent prior knowledge of the feature space
being probed. Future particle physics facilities and discoveries may not follow this trend, and thus a new paradigm
is needed in which specifically engineered features defined with respect to manually identified categories are not
required.

In this Letter of Interest we aim to communicate the need to consider more dynamic approaches to sampling the
hyper-dimensional space probed by the detection systems at particle colliders. Specifically, we would like to posit the
idea to automatically design and refine the trigger and data filtering algorithms at future physics facilities by weaving
together recent advances in explainable AI [1, 10, 14, 18], active learning [2, 3, 4, 7, 11, 12, 20], reinforcement
learning [8, 17], and other approaches that take into account the vast availability of simulated and real data, along
with the traditional approach to producing a hand-designed trigger menu.

Figure 1: An “open-box” predictive model that deciphers the trigger menu with automated explanations and an associated cost
model. Our data-driven trigger system interprets the trigger decision for a given event record by (1) learning a mapping from
the physics features (top row) to the labels extracted by the trigger algorithms from the existing trigger menu (middle row), and
(2) generating explanations of the trigger decisions (i.e. to keep or discard) by automatically identifying an efficient set of
trigger algorithms that contribute the most to the decision (bottom row). In the explanation diagram, larger weight implies that
the corresponding label contributes more to the decision.

Data-driven Modeling and Optimal Design of Trigger Menu

To accomplish such a daunting task, it is essential that the potential for explainability first be established. As
illustated in Figure 1, we advocate to first conceive of a space of cost models by which the data filtering and curation
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process can be quantifiably assessed. Progress towards a fully functional automated data filtering and processing
system must start by constructing a learning-based filter system that is able to reproduce the current, hand-designed,
“trigger menus.” More importantly, though, in order to be useful, this new system must be able to explain its selections
in the context of both low and high-level features (e.g. physics object multiplicities and kinematics). This is the first
step towards constructing an active continuous learning model that is able to update itself and provide explanations
for those updates. A distinguishing aspect of this research effort is its focus on model interpretability: Instead of
a closed-box model that is capable of recovering the original data distribution, we aim to design an “open-box”
predictive model, which, for any given input, not only outputs a decision (e.g., “keep this data point”), but also
explains why we should do so, by associating the decision with the existing rules in the hand-designed trigger menu.

In addition to the overall development of this “open-box” predictive model is the desire to minimize the latency
of the trigger system. Given an incoming data event, each trigger algorithm incurs a latency at runtime – assuming
that algorithms are run in parallel, the latency of the trigger system depends on the worst-case running time of all
trigger algorithms. Thus, for each data event, finding the most efficient set of trigger algorithms at run time is crucial
for a real-time trigger system. Concretely, to address the real-time data processing challenge, we investigate the
following combinatorial optimization problem: given a ground set of candidate trigger algorithms from the existing
trigger menu and the latency cost for each trigger algorithm, we seek an optimal subset of trigger algorithms for
each incoming data event, such that the selected algorithms can jointly make the correct filtering decision with the
minimal latency cost. We will then employ the solution of the above optimization problem as the explanation of our
“open-box” predictive model, which in turn will be used to optimize the latency of the existing trigger system. Here,
we highlight a significant challenge during this process: Since the effectiveness of any subset of trigger algorithm is
often unknown a priori and needs to be learned from data, this task essentially amounts to building a data-driven,
cost-sensitive explainable model—an emerging topic at the frontier of machine learning and operations research.

Automated Trigger Menu Refinement via Active Learning

In order to investigate new types of event data, which may not be captured by the existing trigger menu, a long
term goal is to adaptively update the trigger menu as new data comes in. Based upon the open-box predictive model
constructed from existing event data, our self-driving trigger system will draw upon another two promising threads
of AI research: online learning [5, 16] and active learning [2, 7, 9, 11, 12, 19, 20, 21], to automatically refine the
selections of trigger algorithms by adapting to the new data stream. Both the online and active learning literature
deal with streaming data—where unlabeled data points arrive one at a time—a setting that fits the high-throughput
particle physics application particularly well. In comparison to the classical supervised data-driven models, online
learning predictive models constantly evolve, updating their decision rules as each new data point comes in. On the
other hand, active learning models are built to autonomously decide which data points are the most promising to
keep to help make future decisions. By leveraging tools from these fields, we aim to properly capture the uncertainty
of our “open-box” predictive model on the incoming, unseen data distribution. We will then use such uncertainty
measure to design a principled active sampling framework to explore the high-dimensional data space to avoid
significant blind spots, and hence refine the trigger system on the fly.

While an active sampling system greatly encourages exploration of novel data events, the cost of computing
the optimal active sampling strategy often involves solving non-trivial planing and optimization problems, and can
be prohibitive to run (e.g. when the trigger system demands real-time processing capabilities). In such cases, it is
desirable to design a decision making system that can learn from the previous decision histories and make efficient
predictions at run time [6, 15] (as opposed to solving expensive optimization problems for each incoming data
point). Therefore, our long-term goal is to fully exploit the potential of the high throughput data steam, to developed
a learning-based framework for stream-based active learning, which takes historical trigger decision records as
training data, and learns an efficient active sampling policy on unseen dataset. We view this research as laying the
foundations of a scalable, data-driven real-time trigger system. Successful extraction of a succinct set of physical
intuitions behind a decision will greatly facilitate human understanding of the phenomenon. As such, it serves as a
crucial bridge between the functionality and the accessibility of the model, and hence is a deciding factor for the
real-world deployment of the data-driven trigger system.
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