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Large superconducting detector arrays are becoming more capable and offer sensitivity that are orders of 

magnitude better than current work-horse detectors. For example, cryogenic microcalorimeters have 

demonstrated energy resolution that is 60x better than silicon CCDs for x-ray imaging spectroscopy. These 

detectors offer single photon sensitivity with very low dark noise and ability to provide both imaging and 

spectral discrimination of E/E of greater than 3000 for 6 keV x-rays [1]. Recently, microcalorimeters with 

55,800 pixels have been demonstrated by NASA Goddard Space Flight Center using the MIT Lincoln 

Laboratory’s advanced microfabrication processes for the wiring levels [2].  

MIT/LL has recently developed a process that supports up to 10 superconducting Nb metal layers for 

superconducting electronics [3]. Each Nb metal layer is defined by deep UV (DUV) lithography to achieve 

submicron line/space resolution. The submicron DUV photolithography requires high planarity of circuit 

layers because of the small depth of focus in modern photolithography. Therefore, the MLT/LL fabrication 

process utilizes chemical mechanical polishing (CMP) to ensure all metal layers are deposited on a surface 

with topography height of less than 40 nm. The planarization also simplifies the addition of multiple metal 

layers by making the process modular – the process for the eighth metal layer can be the same as the process 

for the second metal layer. Through use of this process, MIT/LL has integrated over 800,000 Josephson 

Junctions in a single chip [4]. Fig. 1 shows a cross-section of the fabricated chip. This high level of 

integration has been achieved for the first time in this technology and demonstrates the high-yield of circuits 

fabricated in the high-density superconductor electronics process at MIT/LL. 

This LOI intends to introduce the community to the processing capability at MIT/LL and examples of how 

this capability is being utilized to support superconducting detectors. In addition to utilizing the process to 

make large-format microcalorimeters, it is being used to make more sensitive SQUID amplifiers for 

bolometers [5], very low-power read-out circuits at cryogenic temperatures, and ultra-fast signal processing 

for these detectors. This white paper hopes to spark collaboration for new detectors that leverages the 

advanced processes at MIT/LL for advancing high energy physics.  

 

Fig. 1. Cross-section of MIT/LL 8-metal-layer fabrication process with 8 fully-planarized Nb layers marked 

as M0—M7. Josephson Junction is marked JJ, resistor R5. Etched vias between adjacent layers are marked 

I0, I1, etc.
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