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New experiments are producing increasingly growing amounts of data that, in part, need to be stored, but 
also need to be processed on the fly, helping in critical decisions in the operation of experiments, such as 
for example triggering. Individual streams of data carry majorly ‘zeros’ and noise and the whole activity 
context is not known. The bandwidths of links cannot cope with streams of produced unprocessed data. 
Also sending of data entails significant energy expense that can be reduced if data is converted to 
information as early as possible. The streams start reflecting zoned activities in the experiment only when 
combined in data concentrators. Traditionally, data is minimally processed inside and processing needing 
context is outside real time or offline. In the regard of the above, it is worth considering techniques of 
reduction of volumes of raw data generated at detector frontends, and where streams of data get aggregated 
by embedding machine learning, often termed edge computing in custom designed detector readout 
electronics. Introduction of smartness by bringing processing inside with artificial neural networks is a 
future for Read Out Integrated Circuits (ROIC) ASICs. Addressing these topics with practical solutions is 
the subject of this Letter of Intent.  

The focus of this proposal is the study and carry out development of conventional Von-Neumann and non 
Von-Neumann neuromorphic computing based AI ASICs for scientific data processing being targeted for 
the front-end electronics, respecting specific needs, such as extreme environments of operation, restriction 
on power dissipation or circuital resources. This approach postulates harnessing the co-designing 
methodology. As architectures and sizes of a neural processor fits only classes of problems, first, building 
and optimizing a neural network model with the tools available today: Tensor Flow, PyTorch or Caffe2 
frameworks needs to be done. Then, through training of the neural network model to estimate kernel weights 
transition can be fed to hardware design. There, hardware constrained high-level synthesis to optimize the 
registry-transfer-level coding shows up as the right way for implementation due to large sizes of the 
resulting circuits. These steps need collaboration of experimental physicists, computer scientists and circuit 
designers to well understand and to work out practices that will be suited optimally for building neural 
processors for scientific data.     

At present, High Energy Physics (HEP) experiments develop machine learning analysis software and GPUs, 
DSPs or FPGAs as hardware allowing re-programmability and versatility. Experiments such as Minerva, 
DUNE or experiments on the LHC use neural networks for data analysis [1, 2, 3]. Until today, however, 
Neuromorphic Computing algorithms, requiring non Von-Neumann hardware development have been in 
early stage, and have realistically been not used for any high-scale application. Neuromorphic computing 
based on GPUs or FPGAs has huge latency and is definitively not a power efficient solution as it involves 
an enormous number of read and write operations between memory and computation units. 

The approach, consisting in sequential processing of computation sequences, has limited benefits for edge 
computing. ROIC can be developed, unlike general purpose processors, free of this limit. Parallelization, 
in-hardware embedded matrix operations and time-encoding of information [11], instead of electrical 
quantities (voltage or current), are postulated investigations. Here, in-memory computing architectures 
based on crossbar mesh can be given as an example of how the challenging matrix scalar algebra (dot-



product) can be achieved, overcoming the quoted limitations. In particular, such matrix operation 
architectures could be realized using conventional Static Random-Access Memory (SRAM) [5-6] or a non-
volatile memory element such as a Memristor [7-8]. Non-volatile memories offer lower area and power 
requirements than traditional memory elements. Hence, they are a strong contender for using them as 
memory in edge computing hardware [4]. As it was mentioned earlier indicating the co-designing 
methodology as an important approach for conceptual development of AI circuits, co-designing and 
heterogeneity needs to be extended over developing hardware. Memristors are currently not included in any 
mainstream fabrication process. Their fabrication, characterization, and integration with conventional 
CMOS circuits is planned and if it is successful, it would be a major breakthrough in the HEP community. 

Each AI method sets different architectural and programming requirements, and each manages data 
differently. There are also synergies, for example ASIC embedded AI overlaps with other parallelly 
developed concepts such as event-driven processing and data readout in the experiments all the way down 
to the underlying analog and digital circuits. Common is processing new events that carry information when 
possible, not raw data. There are several domains that could immediately benefit from AI based ASICs. 
The first would be waveform processing with digital interpolating filters for processing of sampled 
waveform, e.g. digital peak finding in readout circuits for liquid noble gas Time Projection Chamber (TPC) 
or time of arrival measurement in 4D tracking. The second would be analyzes of spatial distributions of 
signals with enhancing 2D or 3D spatial resolution and data reduction filtering, e.g. solving charge or light 
sharing problems in pixel detectors or extraction of depth of interaction that is desired in PET scanners. The 
last, here but not exhaustive in general, would be contextual analyzes, comprising processing of multi-
source waveforms in radiation detection systems for on-the fly spatially sensitive event reconstruction, e.g. 
processing of signals from arrays of detector electrodes or from detector subsystems in concentrators. 

As the last element, it is stressed that the proposed implementation methodology could be conducted either 
by exploiting High Level Synthesis (HLS) tools [9-10] or novel in-memory computing techniques. Creating 
benchmarks for a novel software and hardware co-design approach resulting in an energy-efficient, low-
latency neuromorphic network that could be designed, fabricated and deployed at the detector readout 
circuitry is a part of the intended work [12].  
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