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Abstract:
Organic scintillator materials have been the central technology in studies of reactor antineutrinos for

almost seven decades. Continued advances in the performance of organic scintillator materials remain
critical to enable the full physics potential of experiments using reactors and other neutrino sources. Nuclear
physics and nuclear security applications also depend upon the continued development of these materials.
Key performance requirements common to these diverse applications are Particle Identification, especially
for fast neutrons and neutron capture, high scintillation light yield, and good optical transmission. Organic
scintillators with Pulse Shape Discrimination properties and 6Li-doping excel in these respects. Support for
continuing development of these materials, leveraging decades of accumulated expertise, has the potential
to increase performance significantly, enabling new or improved detector designs and yielding significant
advances in neutrino physics and beyond.
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Introduction
Organic scintillator materials have been the central technology in studies of reactor antineutrinos for

almost seven decades. They enabled discovery of the neutrino [1], helped to elucidate the 3-flavour
paradigm [2], and have been used to established the era of precision oscillation parameter measurements [3–
5]. Continued advances in the performance of organic scintillator materials remain critical to enable the full
physics potential of experiments using reactors and other neutrino sources. Nuclear physics and nuclear
security applications also depend upon the continued development of these materials. Key performance
requirements common to these diverse applications are Particle Identification (PID), especially for fast
neutrons and neutron capture, high scintillation light yield, and good optical transmission. Organic scin-
tillators with Pulse Shape Discrimination (PSD) properties and 6Li-doping excel in these respects. Liquid
PSD-capable scintillators with 6Li-doping (LiLS) have been produced and used in experiments at the ton-
scale [6]. Plastic scintillators with these properties (LiPS) have recently been invented and are in use at
the prototype scale [7–9]. Support for continuing development of these materials, leveraging decades of
accumulated expertise, has the potential to increase performance significantly, enabling new or improved
detector designs and yielding significant advances in neutrino physics and beyond.

Capabilities provided by Organic Scintillators with PSD and 6Li-doping
Organic scintillators remain a dominant tool for the study of nuclear-energy scale interactions at large

scale. Materials that also support PSD and 6Li-doping while maintaining excellent performance have many
attractive features for further improvements in neutrino and neutron detection; providing important capabil-
ities for a wide variety of experiments. This is particularly true when time and spatial correlations between
several particles and/or interactions are of interest. Advantages of organic scintillators that are capable of
PSD and include 6Li-doping are outlined below:

• For detectors using Inverse Beta Decay, organic scintillators provide the free proton target integral to
the detection medium

• The PID features inherent to these materials provide positive selection of IBD signals, and identify
and reject the predominant neutron-based classes of background

• The ability to scale to large volumes, especially LiLS.
• They readily support detector segmentation, which provides additional information for background

rejection, neutrino baseline measurement, directionality information, and detector fiducialization.
LiPS is especially amenable to 3D segmentation schemes.

• With proper handling, these materials provide long-term stable operation at standard temperature
and pressure, reducing system complexity and operating costs, for example relative to cryogenic
technologies.

• In many cases the chemistry used for solubilization of 6Li can be adapted to other species of interest,
e.g. radioactive isotopes like 227Ac for full volume calibration.

When combined, these capabilities have recently enabled the first high sensitivity detection of reactor
antineutrinos on the earth’s surface [10].

Scientific Opportunities
There are a number of compelling scientific opportunities that are exclusively or primarily supported by

detectors based upon organic scintillator materials. These are significantly enhanced by the incorporation
of PSD and 6Li-doping

• Short Baseline Neutrino Oscillation studies at nuclear reactors. These probe the physics associated
with neutrino mass and the existence of ev2-scale sterile neutrinos.

• Efforts to understand the reactor antineutrino flux and develop precision prediction methods that
rely on Inverse Beta Decay measurements using these materials. Developing precision flux models
enables many other physics opportunities [11].

• Unique phase space in Beyond Standard Model searches, based on boosted dark matter scenarios,
can be accessed using LiLS or LiPS detectors near the Earth’s surface.
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Nuclear Science and Technology Application Opportunities

• As noted above, LiLS has been used for the first demonstration of aboveground reactor antineutrino
detection. This greatly broadens the range of locations at which such technology could be used for
reactor monitoring and safeguards applications.

• Organic scintillators have been extensively used to measure neutron-related nuclear data. These new
classes of 6Li-doped material are attractive for measurements involving multiple neutrons, e.g. ν(E),
the average number of neutrons emitted per fission.

• Highly selective neutron detectors are of interest in nuclear security and safeguards applications for
the detection and characterization of Special Nuclear Materials. LiLS or LiPS would be ideal for fast
neutron spectroscopy using segmented detectors and the capture-gating technique.

Technology Development Priorities
Improvements in following aspects of LiLS and LiPS materials will enable experiments to reduce cost,

further extend sensitivity and physics reach, while also benefiting the many applications mentioned above:

• Increased light output, reduced scattering, and reducing optical attenuation would all improve detec-
tor performance and enable a wider range of geometries and size-scales.

• A better understanding of energy loss and transfer mechanisms in scintillator-fluor systems could
support inherently better PSD performance.

• Improvements in loading schemes, processing and production could improve the long-term stability
of these materials, allowing optimal detector performance for greater time periods and ultimately
reducing cost.

• Effort to identify and minimize the cost drivers for these materials would be beneficial. This is
especially true for LiPS which in current formulations use relatively expensive fluors at high concen-
trations.

• Continued development of LiPS formulations and production techniques to produce ∼ meter length
elements would enable robust, readily transportable antineutrino detectors of the scale needed for
reactor neutrino physics and applications studies.
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