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Abstract:
THEIA is a proposed Water-based Liquid Scintillator (WbLS) detector that is sensitive to a broad

range of physics, including solar neutrinos, supernova neutrinos, atmospheric neutrinos, and proton
decay. If located at the Sanford Underground Research Facility (SURF), THEIA can also perform
a precise measurement of long-baseline neutrino oscillation parameters with a complementary
detector technology and target nucleus to the DUNE liquid argon detectors. Recent advancements
in reconstruction for water Cherenkov detectors have substantially increased the long-baseline
sensitivity of such a detector, and the expected sensitivity of THEIA to both δCP and the neutrino
mass hierarchy, if placed in the soon-to-be excavated 4th LBNF cavern at SURF, is similar to that
of a corresponding DUNE far detector module.
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THEIA achieves a broad range of physics by exploiting new technologies to act simultaneously
as a (low-energy) scintillation detector and a (high-energy) Cherenkov detector. Scintillation light
provides the energy resolution necessary to constrain or reject the majority of radioactive back-
grounds and provides the ability to see slow-moving recoils; Cherenkov light enables event direc-
tion reconstruction, which provides particle ID at high energies and background discrimination at
low energies. Together, these capabilities enable a wide range of physics deliverables, including
a sub-10% measurement of the solar CNO flux, enhanced detection of supernova burst neutrinos
with a pointing accuracy of 1◦ for a galactic supernova, sensitivity for a 5σ measurement of the
Diffuse SuperNova Background (DSNB), and sensitivity to neutrinoless double beta decay down
to a mass of 5 meV [1].

If THEIA is placed at the Sanford Underground Research Facility (SURF), it can also make
measurements of neutrino oscillations from the Long-Baseline Neutrion Facility (LBNF) neutrino
beam produced at Fermilab. Two detector sizes have been considered: a 25 kt detector (THEIA25)
with a 17 kt fiducial volume, and a 100 kt detector (THEIA100) with a 70 kt fiducial volume.
LBNF is planning to excavate 4 detector caverns at SURF, and THEIA25 is designed to fit inside
the 4th, as yet unoccupied, cavern. THEIA100 would require a dedicated, upright-cylinder-shaped
cavity.

The primary physics goal of the DUNE experiment is to measure the CP-violating phase, δCP ,
of the PMNS mixing matrix, as well as other oscillation parameters, such as θ23 and the mass
squared splitting ∆m2

32, and the neutrino mass hierarchy [2]. A THEIA detector placed at SURF
can provide sensitivity to these parameters similar to a comparably-sized liquid argon detector.
The ability to measure long-baseline neutrino oscillations with a distinct set of detector systematic
uncertainties and neutrino interaction uncertainties relative to the liquid argon detectors, would
provide an important independent validation of the extracted oscillation parameter values.

Previous studies of a water Cherenkov detector in the LBNF beam were performed in the con-
text of the predecessor experiment to DUNE: LBNE [3]. These studies were based on Super-
Kamiokande event reconstruction techniques developed within the first several years of Super-
Kamiokande data taking, and were restricted to single-ring events with no detected Michel elec-
trons from stopped pion and muon decay. In the decade since, important advancements have been
made in Cherenkov reconstruction that have substantially improved particle identification and ring
counting. The FiTQun event reconstruction package used for THEIA sensitivity studies has now
been fully implemented in the most recent T2K analyses [4]. These improvements, when applied
to the LBNF beam, enhance the sensitivity to neutrino oscillations in three important ways:

1. The improved ring counting has removed 75% of the neutral current background, relative to
the previous analysis, due to improvements in the detection of the faint second ring in boosted
π0 decays;

2. The improved electron/muon particle identification has allowed for an additional sample of
1-ring, zero Michel electron events from ν3-CCπ+ interactions, without significant contami-
nation from νµ backgrounds

3. Multi-ring νe event samples can now be selected with sufficient purity to further enhance
sensitivity to neutrino oscillation parameters.

In the LBNE analysis [3], a single νe Charged Current (CC) sample was used, which required
no late-time Michel electron signals to further reduce the νµ-CC background. In this analysis,
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using the improved e/µ particle identification capabilities of FiTQun, it is possible to include an
additional sample of νe-CC events with 1 decay electron to include CC1π+ events with very low
νµ-CC background. In addition, 2- and 3-ring νe-CC samples are included in both the neutrino and
antineutrino beam running configurations. In total, there are now 9 νe-CC event samples:

• Neutrino beam mode: 1-, 2-, and 3-ring samples with 0 or 1 Michael electron signal.

• Antineutrino beam mode: 1-, 2-, and 3- ring samples with 0 decay electron signals.

An analysis with GLoBES [5, 6], with comparable systematic uncertainties to thosed used in the
DUNE Conceptual Design Report (CDR), was performed. The resulting sensitivities are shown
in Figure 1. The 17 kt fiducial volume of THEIA25 provides sensitivities to δCP and the mass
hierarchy that are similar to a DUNE 10 kt (fiducial) liquid argon detector.
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FIG. 1. Sensitivity to CP violation (i.e.: determination that δCP 6= 0 or π) (left) and sensitivity to determination of the neutrino
mass ordering (right), as a function of the true value of δCP , for the THEIA 70-kt fiducial volume detector (pink). Also shown are
sensitivity curves for a 10-kt (fiducial) LArTPC (blue dashed) compared to a 17-kt (fiducial) WCD (pink dashed). Seven years of
exposure to the LBNF beam with equal running in neutrino and antineutrino mode is assumed. LArTPC sensitivity is based on
detector performance described by [7].

The reference design in the upcoming DUNE Near Detector Conceptual Design report includes
a 3D scintillator tracker (3DST) [2], which consists of the same 1 cm3 scintillator cube design
as that of the Super-FGD upgrade for the T2K near detector [8]. The 3DST can function as a
high-precision near detector for THEIA, just as the Super-FGD was designed as a near detector for
Super-Kamiokande.
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11University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA

12Boston University, Department of Physics, Boston, MA 02215, USA
13Institute of Physics and Excellence Cluster PRISMA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

14Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
15University of Alberta, Department of Physics, 4-181 CCIS, Edmonton, AB T6G 2E1, Canada

16Pacific Northwest National Laboratory, Richland, WA 99352, USA
17Laurentian University, Department of Physics, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada

18Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803
19Kepler Center for Astro and Particle Physics, Universität Tübingen, 72076 Tübingen, Germany
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