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Abstract: The Tokai-to-Kamioka (T2K) experiment uses an intense (anti)neutrino source produced at J-
PARC, which is sampled by detectors close to production (280 m) and far from it (295 km). The unique
capabilities of T2K have been used to make precision measurements of oscillation physics, neutrino interac-
tions, and searches for exotic phenomena. T2K has made important contributions to the evolving landscape
of oscillation physics, including the discovery of charged current νe appearance and significant constraints on
CP violation (CPV) in the lepton sector. T2K also has the strongest constraints on other important physics
parameters of interest (e.g. sin2 θ23). Major improvements to key components of the experiment (neutrino
beam, near and far detectors) are planned, which will enhance sensitivity to oscillation physics parameters,
including CPV, and will enable improved or new neutrino cross section measurements. In addition, efforts to
perform a combined analysis of T2K data with other experiments (Super-Kamiokande, NOvA) are underway.
T2K expects to take data with an upgraded near detector until the start of Hyper-Kamiokande, aiming to col-
lect data corresponding to 10×1021 protons-on-target (POT), for a continued, vibrant physics program which
will pursue 3σ observation of CPV in neutrinos and support the next generation of neutrino experiments.
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The Tokai-to-Kamioka (T2K) experiment [1] is an accelerator-driven neutrino oscillation experiment, which
hosts a broad physics program of precision neutrino oscillation, neutrino cross section measurements, as well
as searches for exotic physics. It has operated since 2009 and has taken 1.97(1.63) × 1021 POT to date in
neutrino(antineutrino)-enhanced beam modes. In 2013, T2K discovered νµ → νe appearance [2] and in 2019,
T2K presented the most stringent constraints on CPV in the lepton sector [3].

Upgraded Beam and Detector Capabilities: The J-PARC neutrino beam source for T2K can produce
neutrino-enhanced and antineutrino-enhanced beams. The beam has been stably operated above 500 kW.
A magnet power supply upgrade in 2021 will decrease the time between beam pulses from 2.48 s to 1.32 s,
increasing the beam power. Additional RF upgrades and machine development should allow the beam power
to reach 1 MW by Japanese Fiscal Year (JFY) 2025. Starting in 2020, oscillation analyses incorporate the
charged pion yields measured by NA61/SHINE from a T2K-replica target [4] to constrain the beam flux
prediction and will expand to include more species in the future [5]. This has reduced the flux uncertainty
from about 10% to around 5% near the flux peak. Future hadron production data at lower energies and
high-statistics replica-target data will reduce these uncertainties further, and improvements in proton beam
monitoring and analysis are also being developed; this effort is relevant to the future global program.

Multiple detectors sample the neutrino beam at different locations close (280m) and far (295km) from the
source. T2K’s near detector suite includes a detector colinear with the neutrino source axis (“on-axis”) de-
tector (INGRID [6]), and two tracking detectors at different positions transverse to the beam (“off-axis”,
ND280, WAGASCI+BabyMIND [7]). The far detector, Super-Kamiokande (SK) is an enormous (50kt) water-
Cherenkov detector, also off-axis. The different positions in the beam result in three distinct energy spectra
for use in physics analyses. A new, upgraded ND280 detector, with a fully active target [8] (SuperFGD),
surrounded by new horizontal TPCs with a resistive Micromegas for gas amplification [9], will have signifi-
cantly increased acceptance to particles emitted at high and backward angles, and to low energy protons. It
will be operational in 2022 [10]. The improved capabilities of this detector will help reduce the systematic
uncertainties due to the neutrino-interactions model to an unprecedented level.

Oscillation Physics Program: T2K uses two primary oscillation channels in both neutrino and antineutrino
beams: in the νµ(νµ) disappearance channel, the initially produced νµ oscillate into other flavors, which is
studied by observing the interaction of the remaining νµ in the far detector. In the νe(νe) appearance channel,
νe interactions from the νµ → νe oscillation and the intrinsic νe in the beam are studied. Since 2016, T2K has
utilized a joint fit of all four modes of oscillation in extracting three-flavor mixing parameters, including the
magnitude and sign of ∆m2

32/31, sin2 θ23, and δCP , and compare the channels separately. As T2K measures
fundamental parameters of neutrino mixing, the T2K program is fully aligned with the P5 Science Driver
to “Pursue the physics associated with neutrino mass” and for the next several years will be at the forefront
of addressing “some of the most significant questions” such as whether neutrinos and antineutrinos oscillate
differently and how the neutrino masses are ordered. As a general strategy, the experiment expects to alternate
between antineutrino and neutrino-enhanced beam configurations to integrate roughly equal exposure in each.
T2K expects to take data with an upgraded ND280 detector until the start of the Hyper-Kamiokande [11]
experiment, aiming to collect data corresponding to 10×1021 POT. The new data, combined with development
of the selection of νµ and νe candidates in SK and upgrades to the beamline and near detector, will improve
statistical precision and sensitivity to CPV and mass ordering; precision measurements of ∆m2

32/31, sin2 θ23
are also planned [12].

Joint analyses of T2K data with other experiments enhance the scientific reach of the T2K program. As such,
MoUs and joint working groups have been established with the Super-Kamiokande (atmospheric neutrino)
and NOvA [13] (accelerator neutrino) experiments. The oscillation probability has degeneracies which make
interpretation of the observed oscillated rates as unique parameter values difficult. This includes the (un-
known) mass ordering, θ23 octant, and intrinsic degeneracy of θ13 , δCP , and θ23 in the appearance channel.
Combinations of experimental data from different baselines and neutrino energies also resolves degeneracies
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in a complementary way, which provides improved sensitivity to the physics and/or physics reach outside
parameter space accessible by each experiment. As significant correlations between experiments are expected
from the neutrino interaction model, direct collaboration between the experiments is essential.

Neutrino Interaction Progress and Measurements: Continuing development of the neutrino interaction
models is a scientific goal of T2K. T2K utilizes an important feedback loop between model development,
implementation and application to analyses, which has resulted in reduced model systematic uncertainties
and more robust oscillation and cross section analyses. First, T2K has close contact with model builders;
T2K collaborates actively with theory groups within and outside the collaboration. Second, T2K performs
comprehensive tests of models against external data sets, where the NUISANCE [14] framework and strong
connections to other experiments are critical. T2K has developed new methods to parameterize model un-
certainties and deficiencies, and propagate these uniformly to external data sets, and the oscillation analysis.
Finally, T2K revisits modelling limitations yearly, where new or updated models and uncertainties are incor-
porated into the analysis. As a consumer and a producer of neutrino cross section measurements, T2K is an
integral component of cross-collaboration workshops (e.g. TENSIONS [15], NuSTEC [16]) which critically
reflected on the use of and needs of cross section measurements. Theory groups, and experiments, such as
MicroBooNE [17], Super-Kamiokande, have made extensive use of T2K data.

A key output of the T2K program is measurements of neutrino interactions on a variety of targets; these are
provided to the community to further improve interaction models of interest to those studying neutrino oscilla-
tion, atmospheric neutrinos and supernova neutrinos[18–35]. In addition, T2K has made important measure-
ments of rare processes [36–38]. An improved set of measurements will be possible due to the increased data
collected, the presence of new, highly capable detectors in the beamline and improved neutrino flux model.
These new measurements will be specifically tailored to confront the sources of the primary systematic un-
certainties in neutrino oscillation analyses. They will include measurements of correlations between outgoing
hadrons and leptons to probe nuclear-medium effects, joint analyses between the different T2K near detectors
to directly study the energy dependence of cross sections, and the improved use of calorimetry. Moreover,
the new SuperFGD’s neutron tagging capabilities and WAGASCI’s high purity water target will allow such
measurements to be made separately for neutrinos and antineutrinos on carbon and oxygen targets.

Exotics Reach: T2K’s unique experimental set up has provided for novel searches for exotic phenomena,
including Lorentz violation [39], sterile neutrinos [40, 41], and neutral heavy leptons [42]. T2K plans to
perform new and improved measurements of those channels and will continue performing tests of the three
flavor framework, such as tests of CPT, larger-than-predicted CP violation, and comparisons of oscillation
parameters to those estimated by other experiments, especially reactor experiments. The intense beam may
also produce neutral heavy leptons and light dark matter candidates, which can be searched for with T2K’s
extensive suite of near and far detectors.

Impact and Future: T2K’s program provides a roadmap to the precision needed by the next generation of
long-baseline experiments. Over the last decade, T2K has trained a new generation of students and postdoc-
toral researchers in advanced analysis methods. These people will perform the next set of measurements in
neutrino oscillation, cross sections, and exotic searches planned by the DUNE and Hyper-Kamiokande exper-
iments. The planned extensions to the experiment are important to the future as well. In particular, T2K data
and operation offer important constraints on the flux and interaction model, and T2K analysis methodology
has been used extensively by the future program. T2K will continue to develop novel beamline measurements
and improved estimates of systematic uncertainties associated to the neutrino flux. T2K will use new de-
tector information (SK-Gd [43, 44] and ND280 upgrade) to assess and improve a comprehensive interaction
model. In particular, both the near and far detectors will have sensitivity to the composition of neutrons in
the final state relevant for (anti)neutrino energy reconstruction. Finally, the technology used in the SuperFGD
component of the ND280 detector is planned to be used in a DUNE detector (SAND).
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de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France
51STFC, Rutherford Appleton Laboratory, Harwell Oxford, and Daresbury Laboratory, Warrington, United Kingdom

52University of Tokyo, Department of Physics, Tokyo, Japan
53University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan

54University of Tokyo, Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, Kashiwa, Japan
55Tokyo Institute of Technology, Department of Physics, Tokyo, Japan

56Tokyo Metropolitan University, Department of Physics, Tokyo, Japan
57Tokyo University of Science, Faculty of Science and Technology, Department of Physics, Noda, Chiba, Japan

58University of Toronto, Department of Physics, Toronto, Ontario, Canada
59TRIUMF, Vancouver, British Columbia, Canada

60University of Warsaw, Faculty of Physics, Warsaw, Poland
61Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Warsaw, Poland

62University of Warwick, Department of Physics, Coventry, United Kingdom
63University of Winnipeg, Department of Physics, Winnipeg, Manitoba, Canada

64Wroclaw University, Faculty of Physics and Astronomy, Wroclaw, Poland
65Yokohama National University, Department of Physics, Yokohama, Japan

66York University, Department of Physics and Astronomy, Toronto, Ontario, Canada

∗ also at INFN-Laboratori Nazionali di Legnaro
† also at J-PARC, Tokai, Japan
‡ affiliated member at Kavli IPMU (WPI), the University of Tokyo, Japan
§ also at National Research Nuclear University ”MEPhI” and Moscow Institute of Physics and Technology, Moscow, Russia
¶ also at the Graduate University of Science and Technology, Vietnam Academy of Science and Technology
∗∗ also at JINR, Dubna, Russia
†† also at Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP)
‡‡ also at BMCC/CUNY, Science Department, New York, New York, U.S.A.


	References
	

