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Abstract

Particle imaging detectors such as Time Projection Chambers (TPC) and Water Cherenkov (WC)
detectors are widely used in the current and future key neutrino programs including Deep Under-
ground Neutrino Experiment (DUNE), Short Baseline Neutrino (SBN) program, Super-Kamiokande,
Hyper-Kamiokande, and neutrino-less double beta decay experiments such as NEXT. These detectors
face unique challenges including poorly understood nuclear models, limited calibration methods for
understanding the detector response, and inefficient inference of neutrino oscillation parameters to
name a few. Recent advancements in Computer Vision (CV) and Machine Learning (ML) are directly
relevant to these research programs and have been adopted to boost physics output. More adaptation
of those techniques, emerging exascale computing facilities, and R&D of domain-specific, scientific ML
techniques are expected within the next decade. In this letter, we briefly describe ML and statistical
methods to address key challenges and propose a community-wide initiative to support, and guide the
R&D program to maximize the impact in experimental neutrino physics. This effort requires building
of a collaborative ecosystem within neutrino physics as well as interconnections with a wider scientific
research community.
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Introduction

Machine Learning (ML) techniques are widely used across the field of high energy physics [1]. Recently,
methods from Computer Vision (CV) have been applied to data from particle imaging neutrino detectors
including Time Projection Chambers (TPCs) and Water Cherenkov (WC) detectors [2, 3, 4, 5, 6, 7, 8].
Despite some successful applications, critical research challenges remain. How can we study nuclear
models with ML methods? How do we interpret the output of ML models? What is the most efficient
way to process millions of neutrino images with ML models? Can we develop a research ecosystem
to incorporate emerging ML techniques and co-develop scientific ML applications with experts outside
our domain? Future directions for developing scientific ML methods are discussed in this letter in an
attempt to address those common questions across neutrino experiments including Deep Underground
Neutrino Experiment (DUNE), Short Baseline Neutrino (SBN) program, Water Cherenkov (WC) detec-
tors in general, and neutrino-less double-beta decay experiments such as NEXT. The letter is relevant
for Neutrino Oscillations (NF1), Sterile Neutrinos (NF2), BSM (NF3), and Neutrino Interaction Cross
Sections (NF6).

Interpretable ML Models and Data Reconstruction

There are two key elements to an algorithm’s interpretability. The first is its architecture in which
inductive bias and causal structure (e.g. the laws of physics) may be introduced [9]. The second is to
produce a probabilistic output with uncertainty estimation beyond a single value estimation, which is
common in typical neural network applications in the field. Both of these are critical topics in the
research frontier of scientific ML R&D, which involves experts in both neutrino physics and ML.

An internal causal structure, for instance “a Michel electron must originate from the end of a muon
trajectory”, naturally leads to the design of a data reconstruction chain in which key physics observables
are derived and a hierarchical dependency among them, or causality, is enforced. As such, the develop-
ment of the data reconstruction chain coincides with highly interpretable, explainable ML models, and
will be an important research frontier [10, 11, 12, 13, 14]. For reconstructed parameters, quantification
techniques for uncertainties [15, 16] including both an intrinsic to the model and a propagated one from
the input parameters will be necessary for full interpretability. Furthermore, a reconstruction chain that
provides full details about a neutrino interaction including individual out-going particles with their type
and kinematic information will be a critical tool to perform neutrino-nucleus cross-section analyses and
improve our knowledge about nuclear models, which is needed for neutrino oscillation analysis.

Gradient-based Automated Optimization

Gradient-based optimization has been essential to the advancement of ML techniques. There are two key
research areas with potential high impact on neutrino physics. The first is to make the data reconstruction
chain differentiable, which is automatically achieved for a ML-based approach. This allows end-to-end
optimization with minimal human intervention. A traditional approach in neutrino physics is to have
multiple developers tune individual algorithms, then a software management team combine these to make
the whole chain work. This process typically takes months or years and does not necessarily optimize the
whole chain. This is mitigated within ML-based approaches where the optimization target and gradients
are well defined, such that the whole chain can be optimized together.

The other research frontier is to restructure our simulation, which includes our physics models, using
differentiable programming [17] so that we can directly infer physics parameters through gradient-based
optimization methods [18, 19, 20]. This gives us the potential to tune detector physics parameters directly
from real data, which may be important for detectors such as LArTPCs where calibration methods are
limited. Being able to take a gradient also allows propagation of input systematic uncertainties to
simulation output. Differentiable programming is expected to play a key role in neutrino physics.

Scalable ML Methods at High Performance Computing (HPC) Clusters

A major bottleneck in the application of machine learning techniques to neutrino detectors is the time
taken to train, evaluate, adjust, and retrain models to achieve acceptable performance. Spending weeks to
train a model is feasible for cutting edge ML research in industry but is prohibitive for application of these
techniques to neutrino detectors. Several experiments and researchers have actively developed scalable
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techniques for accelerating training time of networks, including sparse convolutional techniques [10,
11, 12], sparse and scalable data distribution mechanisms [21, 22], and scalable model training via
HPC systems such as Summit at Oak Ridge. Currently, use of these techniques requires expertise and
experience in high performance computing and GPU programming. A particularly impactful development
in neutrino detectors and ML is the lowering of the barriers of entry to HPC systems, and highly efficient
and easy to use libraries for these techniques. Current experiments have shown training times reduced
from ∼2 weeks to under an hour with these techniques [21].

After tne development of a trained model, efficient inference on data and simulation is essential.
With the use of HPC systems, these models can efficiently leverage modern co-processors in a highly
parallel way, as well as utilize the high bandwidth IO to process datasets in hours instead of months.
Additionally, for the application of trained models on more inefficient systems, such as Open Science Grid,
lower precision quantization techniques can be used to accelerate inference without loss of precision.

Mitigation of Domain Discrepancies

A notable challenge in neutrino experiments that seek to apply ML to their data is that models are
typically trained based on large, high fidelity simulation datasets. While overtraining is easily avoided
by generating more simulated data, domain-specific overfitting is a common pitfall that is harder to
avoid. In this case, the model learns features of the simulation that are not present in the data. When
applied to real data, the model makes incorrect and uninformed decisions.

Several techniques have been proposed to measure the domain discrepancy of a network during
training time, and there are several tantalizing techniques in computer vision for mitigating the challenges
of physics modeling when training neural networks. For example, an adversarial training method has
been explored to mitigate different event generator domain discrepancies [23]. Using statistical tests of
a network’s intermediate activations, such as energy-distance, can yield a quantitative comparison of
which networks will work when trained on simulation and applied to data [24]. Additionally, generative
techniques such as Cycle-GAN [25] are extremely promising for learning, and then correcting, deficiencies
in physics modeling in simulation.

Public Datasets

Public datasets have been the drivers for multiple leaps in ML methods, including the ImageNet [26] for
deep convolutional neural networks and the ShapeNet [27] for graph neural networks. Unfortunately, for
the globally sparse, locally dense particle images in TPCs, as well as irregular and graph-like datasets
from experiments like IceCube, there is no “industry standard” dataset for benchmarking models.

We propose a new suite of public datasets that moves the boundaries of these and other frontiers
by using data samples from high precision particle imaging detectors used in high energy physics ex-
periments. These science programs narrowly focus on specific physics goals and provide unique dataset
features that are not available in industrial counterparts. An initiative has been made for simulation
of LArTPC detectors [28], which has sparked several development efforts and collaborations across the
field. We propose experimental collaborations to work together to produce and maintain such simulation
samples. Furthermore, we consider the development of public datasets based on real experimental data
an essential ingredient to driving cross-collaboration and fast dissemination of results in this area of ML.

Conclusion

Scientific ML R&D will remain an active area of research in the near future, and the field of neutrino
physics continues to lead the development of interpretable, scalable ML techniques with a unique and
strong tie to CV. Data reconstruction will enable ML methods to study neutrino-nuclear cross-section
physics in full detail, which is critical for accurate neutrino oscillation measurements or the discovery of a
hypothetical sterile neutrino. End-to-end pipelines provide automated optimization workflows and min-
imize or eliminate costly “by-hand” tuning by physicists. Exploring highly parallelizable ML algorithms
will allow the neutrino community to utilize HPC facilities and scale our computing power by orders of
magnitude. Through public datasets with common benchmark metrics, collaborative development across
the community of neutrino physics and beyond should be enabled. We propose these future research
directions to be discussed within the Neutrino Frontier of Snowmass 2021.
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