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Large Extra-Dimension Searches, LoI
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fDepartment of Physics, University of Perugia and INFN Genova, Italy
gTheoretical Physics Department, Fermilab, P.O. Box 500, Batavia, IL 60510, USA
hSchool of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
iDepartment of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
jCenter for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA

E-mail: emb@kth.se, anc238@pitt.edu, albert.de.roeck@cern.ch,

enrique.fernandez-martinez@uam.es, dvanegas@udem.edu.co,

z.gh.moghaddam@gmail.com, kkelly12@fnal.gov, pmachado@fnal.gov,

pm@jnu.ac.in, salvador.rosauro@uam.es, alex.sousa@uc.edu,

ztabrizi@vt.edu, ytsai@fnal.gov

1Lead Authors.

mailto:emb@kth.se
mailto:anc238@pitt.edu
mailto:albert.de.roeck@cern.ch
mailto:enrique.fernandez-martinez@uam.es
mailto:dvanegas@udem.edu.co
mailto:z.gh.moghaddam@gmail.com
mailto:kkelly12@fnal.gov
mailto:pmachado@fnal.gov
mailto:pm@jnu.ac.in
mailto:salvador.rosauro@uam.es
mailto:alex.sousa@uc.edu
mailto:ztabrizi@vt.edu
mailto:ytsai@fnal.gov


The main motivation for introducing extra space-time dimensions was to alleviate the so

called hierarchy problem, i.e. the large difference between the electroweak and the GUT [1, 2]

or the Planck energy scales [3–5]. More interestingly, models with large extradimensions can

also accommodate non-zero neutrino masses. Since right-handed neutrinos are singlets under

the Standard Model (SM) gauge group, they are one of the candidates to experience extra

space-time dimensions and therefore to collect an infinite number of Kaluza-Klein excitations

after compactification (integration of the Lagrangian density for the right-handed fields over

the extra space time dimensions) [6, 7]. The remaining SM fermions are restricted to a

four-dimensional brane. In this way, the Yukawa couplings between the right-handed and

the active neutrinos are suppressed by the volume factor after compactification of the extra

dimensions. In this context, neutrinos acquire a Dirac mass that is naturally small and thus

provides an alternative to the usual seesaw mechanism for the generation of the neutrino

masses while avoiding the need for large energy scales.

It is phenomenologically appealing to consider an asymmetric case where one of the extra

dimensions is large with respect to the others, effectively reducing the problem to be five

dimensional. In what follows we consider the specific model for Large Extra Dimensions (LED)

from Ref. [8], which condenses the seminal works and provides estimates for constraints from

oscillation neutrino experiments. This model considers three bulk right-handed neutrinos

(experiencing extra space-time dimensions) coupled to the three active brane neutrinos. After

compactification of the effective extra dimension, from the four dimensional (brane) point of

view, the right-handed neutrino appears as an infinite tower of sterile neutrinos or Kaluza-Klein

modes (n = 0, 1...∞). Since the active neutrinos couple to the sterile neutrino states through

the Yukawa couplings, they mix and Dirac neutrino masses m
(n)
i = λ

(n)
i /R are generated,

where λ(n) is the eigenvalue of the n× n neutrino mass matrix and R is the compactification

radius. The free parameters describing neutrino oscillations in the LED model are the three

Dirac masses mD and R, however, one can parametrize the degrees of freedom in terms of the

absolute neutrino mass scale m0 and R [9], with m0 ≡ mD
1 (m0 ≡ mD

3 ) for normal (inverted)

neutrino mass ordering.

The sterile-active mixings and the new oscillation frequencies modify the three flavor

active neutrino oscillations [10, 11], therefore distorting the neutrino event energy spectrum.

Departures from the standard oscillations due to the existence of LED can then be probed

at neutrino oscillation experiments [8, 12–17]. The measured mass-squared differences and

mixing angles constrain the parameter space of the LED model i.e. the absolute mass scale

m0 and the radius of compactification R. The mostly active case corresponds to n = 0 where

the standard three neutrino oscillations are recovered in the limit R→ 0. The mostly sterile

case then corresponds to n� 1 and oscillations will appear smeared at large baselines over

neutrino energy factor (so at the far detector of a long baseline accelerator neutrino experiment)

since a large n implies large oscillation phases, at the same time the active-sterile mixing is

suppressed [8, 12]. This helps to fix the maximum number of KK modes to a finite value and

makes the LED model pretty testable at neutrino oscillation experiments, in particular at

long-baseline accelerator neutrino facilities.
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Figure 1. Muon neutrino disappearance probability at the DUNE near (far) detector baseline, 575m

(1300km), is presented in the left (right) panel. The black line corresponds to the standard neutrino

oscillation case, while the LED case is shown in red and dark green, where the finite detector energy

resolution is also taken into account in the latter curve.

In the forthcoming precision era, new physics signals might emerge as subleading effects

of the three neutrino paradigm or as a new oscillation phase(s). This last scenario is mainly

motivated by results of short-baseline experiments which call for a new neutrino flavor state

that has to be sterile, i.e. it cannot interact with the Standard Model gauge bosons. Although

the unexpected results observed by some short baseline experiments seem compatible with a

new, nonzero oscillation phase, several other experiments challenge this interpretation (see

e.g. Refs. [18–20] for reviews). Several efforts are devoted to discover a sterile oscillation at

the eV-mass scale or to completely rule out this hypothesis [21, 22]. Since the LED model

predicts a large number of sterile states, it is worth testing this model in the same footing as

it is being done for the 3 + 1 scenario.

With respect to the standard three–neutrino oscillation case, the mixing predicted by the

LED model has two striking features: a global reduction of survival probabilities, which is

typically noticeable at high energies and an appearance of modulations and fast oscillations to

Kaluza-Klein states [12, 23], as shown in Fig. 1. Variants of the most simple LED realization

comprising bulk mass terms may also induce neutrino appearance at short baselines and

perturb the typical LED pattern of masses and mixings [24]. Given the broad mass spectrum

of Kaluza-Klein modes, a robust way of constraining these models comes from analyzing the

shape of the measured neutrino energy spectrum. In particular, combining information from

near and far detectors allows to probe lighter and heavier KK modes, providing a powerful

test of the LED hypothesis.
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Neutrino oscillation experiments with capabilities to detect neutrinos in a wide energy

range, and with a good energy resolution, are more suitable to exploit the LED features.

Current and future long-baseline neutrino experiments, and high energy atmospheric neutrinos

experiments like IceCube [14], are therefore good candidates for this search 1. In particular,

the MINOS collaboration [23] was the first long-baseline experiment to constrain the LED

compactification radius to R < 0.45µm at 90% of C.L [30]. Recently, forecast analyses have

explored the DUNE capabilities to constraint the LED model [16]. An updated version

including the most recent DUNE fluxes and efficiencies appear in Ref. [31]. In general, future

high intensity beam experiments with higher resolutions and/or fiducial masses, like DUNE

and HyperK, are expected to probe LED subleading oscillation effects allowed by current

searches.

In summary, neutrino oscillations within the LED model considered here provide unique

features that can be explored in parallel to the search for a sterile neutrino oscillation at the

eV energy scale. Long–baseline experiments detecting neutrinos at high energies, and with a

percent-level energy resolution, are good candidates for LED probes. In particular, sensitivity

studies have shown the DUNE far detector potential to improve over the current MINOS limit.

This potential improvement arises from the DUNE capabilities to reconstruct the main LED

modulations at high energies, which were exploited in the sensitivity analysis by using spectral

information. A similar sensitivity analysis at short baselines also provides complementary

information [17]. Therefore, having a long-baseline experiment with two detectors is very

suitable for exploring a large LED parameter space. In the case of DUNE, the near detector

sensitivity to LED is only limited by the systematical errors due to its large statistics, thus, a

two-detector analysis with realistic systematics is very promising for future LED searches.
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