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E. Fernández-Mart́ınez,d,1 D. V. Forero,e,1 J. Hewes,b K.J. Kelly,f5

Pedro A. N. Machado,f P. Mehta,g I. Mocioiu,h Z Gh.Moghaddam,i R. Mohanta,j6

S. Oh,b M. Rajaoalisoa,b A. De Roeck,k S. Rosauro-Alcaraz,d,1 C. Sarasty Segura,b7

A. Sousa,b,1 J. Suarez Gonzalez,l T. Thakore,b M. Tórtola,m,n Y.-D. Tsai,f and8
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Most results from experiments measuring solar neutrinos, atmospheric neutrinos, and27

neutrinos produced by accelerators and in nuclear reactors, are well-described by oscillations28

between three distinct neutrino types: the electron, muon, and tau neutrinos. However, several29

anomalies have puzzled and baffled the neutrino physics community. For example, the Liquid30

Scintilator Neutrino Detector (LSND) experiment reported a 3.8σ excess of ν̄e appearance31

in a ν̄µ beam over a short baseline [1]. In addition, MiniBooNE reported a 4.8σ excess in32

electron antineutrino appearance [2] compatible with ν̄µ → ν̄e oscillations in the 0.01 to 1 eV2
33

range of ∆m2
41 values. Both of these excesses have been interpreted as evidence for oscillations34

between the known active neutrinos and eV-scale sterile neutrinos, which do not couple to35

other matter through known Standard Model interactions. Additional neutrino flavors may36

clarify the origin of neutrino mass, provide dark matter candidates [3], and explain core37

collapse in supernovæ [4, 5]. These strongly compel searches for sterile neutrinos.38

In long-baseline (LBL) experiments, like MINOS/MINOS+, NOvA, T2K, and OPERA,39

with (E/L)LBL ∼ 0.001 GeV/km at the Far detector, searching for sterile neutrinos with40

∆m2
41 = 1 eV2 through an excess appearance of electron antineutrinos consistent, for instance,41

with the LSND best-fit point, is very difficult as (E/L)LSND ∼ 1 GeV/km and the ν̄µ → ν̄e42

oscillation probability preferred by LSND corresponds to a very small 0.3% effect. However,43

LBL experiments can be powerful probes for sterile neutrino oscillations through looking44

for disappearance of the beam neutrino flux between the Near and Far detectors. This45

results from the quadratic suppression of the θµe sterile mixing angle measured in appearance46

experiments,
(
sin2 2θµe = 4|Uµ4|2|Ue4|2, for a 3 + 1 model

)
, with respect to its disappearance47

counterparts, θµµ ≈ θ24 for LBL experiments
[
sin2 2θµµ = 4|Uµ4|2

(
1− |Uµ4|2

)]
, and θee ≈ θ1448

for reactor experiments
[
sin2 2θee = 4|Ue4|2

(
1− |Ue4|2

)]
. These disappearance effects have49

not been observed despite an extensive number of probes [6–9], and are in strong tension50

(4.7σ) with appearance results when a global fit of all available data is carried out [10].51

Future LBL experiments will primarily probe light sterile neutrino mixing by searching52

for deficits of neutral-current (NC) interactions measured at the Far detector with respect53

to the Near detector prediction, as well as through deficits from similar measurements of54

charged-current (CC) muon and electron interactions. Since NC cross-sections and interaction55

topologies are the same for all three active neutrino flavors, the NC spectrum is insensitive56

to standard neutrino mixing. However, oscillations into a fourth light neutrino would induce57

an energy-dependent depletion at the FD, as the sterile neutrino would not interact in the58

detector volume. Furthermore, if sterile neutrino mixing is driven by a large mass-square59

difference ∆m2
41 ∼1 eV2, the CC spectrum is distorted at energies higher than the energy60

corresponding to the standard oscillation maximum. Assuming a 3+1 model with one sterile61

neutrino, the LBL NC disappearance probability to first order in small mixing angles is given62

by:63

1− P (νµ → νs) ≈ 1− cos4 θ14 cos2 θ34 sin2 2θ24 sin2 ∆41

− sin2 θ34 sin2 2θ23 sin2 ∆31

+
1

2
sin δ24 sin θ24 sin 2θ23 sin ∆31,

(1)
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where ∆ji =
∆m2

jiL

4E . The relevant oscillation probability for νµ CC disappearance is the64

νµ survival probability, similarly approximated by:65

P (νµ → νµ) ≈ 1− sin2 2θ23 sin2 ∆31

+ 2 sin2 2θ23 sin2 θ24 sin2 ∆31

− sin2 2θ24 sin2 ∆41.

(2)

Finally, the disappearance of νe CC is described by:66

P (νe → νe) ≈ 1− sin2 2θ13 sin2 ∆31

− sin2 2θ14 sin2 ∆41.
(3)

Figure 1. DUNE 90% C.L. sensitivities to θµe (solid

black and solid grey lines) using CC muon and electron

disappearance channels at the Near and Far detectors. A

comparison with limits and allowed regions from previous

and current experiments, and with the sensitivity from

the future Short-Baseline Neutrino program, is shown.

Regions to the right of the contours are excluded.

Present LBL accelerator experiment67

results on sterile neutrinos, such as68

from MINOS/MINOS+, T2K, NOvA,69

and OPERA [6–9], have established70

strong tension with indications from71

short-baseline (SBL) experiments. This72

tension largely excludes a pure sterile73

neutrino oscillation solution for global74

data, a conclusion that remains valid for75

models with additional sterile states [10,76

11]. Along with atmospheric neutrino77

searches [12–15], LBL sterile probes also78

contribute to constraining the θµτ ≈ θ3479

angle in regions of parameter space with80

small sterile mass-square splitting, in-81

accessible to SBL experiments. Future82

LBL experiments, like DUNE [16, 17],83

HyperK [18], or ESSnu [19], will uti-84

lize megawatt-level neutrino beams, sam-85

pled by Far detectors with higher resolu-86

tion and/or large fiducial masses. These87

improvements over present experiments88

will not only enable more sensitive light sterile probes, but also open additional channels89

for such probes, such as LBL electron neutrino disappearance and appearance. This allows90

a single LBL experiment like DUNE to probe the LSND and MiniBooNE allowed regions,91

as shown in Fig. 1 [16, 17]. Furthermore, the highly-capable Near detectors to be used by92

future experiments will collect neutrino interaction samples unprecedented in size, contributing93

sensitivity to similar regions of parameter space probed by SBL experiments. To successfully94

enable these searches, it is essential to conduct simultaneous two-detector analyses including95

SBL oscillations at the Near detector, as well as improve external constraints on the neutrino96
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flux independent of potential sterile mixing, such as concurrent muon flux measurements97

from beam monitoring devices [20, 21] and hadroproduction measurements [22, 23]. Finally,98

interpretation of the precise measurements of standard oscillation at these new facilities will99

benefit from complementarity of new physics probes at LBL, SBL, atmospheric, and reactor100

experiments [24–27]. The sensitivity of LBL experiments to light sterile mixing over a broad101

range of mass splittings, as well as access to 3-flavor-independent checks of unitarity of the102

mixing matrix through the NC disappearance channel [27, 28], further strengthens the case to103

conduct light sterile neutrino searches at future LBL neutrino facilities.104
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