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PROSPECT is a short-baseline reactor antineutrino experiment consisting of a segmented liquid
scintillator detector designed to probe the existence of sterile neutrino oscillations and precisely
measure antineutrino production by nuclear reactors. This LOI will describe the sterile neutrino os-
cillation and reactor physics capabilities of a many-year program of measurement at highly-enriched
and low-enriched reactor facilities with an upgraded PROSPECT detector, termed PROSPECT-II.
With modest input construction, operations, and research support, PROSPECT-II can be realized in
less than two years, and can deliver world-leading oscillation and spectrum/flux physics results from
the early-mid 2020’s through the end of the decade.
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The Expanded Physics Reach of PROSPECT-II

Physics Motivation
In the simplest ‘3+1’ sterile neutrino oscillation picture [1], mixing matrix elements Ue4 and Uµ4 are

defined primarily by the mixing angles θ14 and θ24. For θ14, improvements in coverage by short-baseline
reactor experiments like PROSPECT [2, 3] and others [4–7] are likely to drive the field for the next decade.
Beyond the 3+1 scenario, these matrix elements may just as easily reflect completely different or more
complex physics processes, including, for example, multiple sterile neutrino states [8, 9], CP-violation [10],
non-standard neutrino interactions [11], or neutrino decay [12]. Thus, PROSPECT and its reactor experi-
ment counterparts play an essential role in a complementary global program to probe the potential rich array
of BSM physics hidden in the sterile neutrino sector. Moreover, without proper short-baseline constraints
on sterile oscillations or other non-standard flavor transformations, long-baseline measurements of Standard
Model neutrino properties, such as leptonic CP-violation [13], θ23 octant [14], and the mass hierarchy [15],
may be limited or complicated.

Short-baseline reactor experiments like PROSPECT are also uniquely capable of enhancing the preci-
sion of our understanding of the complex process of antineutrino production within nuclear reactors [16].
These experiments’ high detection statistics and varied site deployments allow antineutrino fluxes and spec-
tra to be sampled at widely varying reactor fuel compositions. These datasets are essential to understanding
whether existing differences between measured and predicted reactor fluxes and spectra arise from a misun-
derstanding of production in reactors [17–20], or of fundamental neutrino properties [21–24]. More precise
spectrum and flux information from future short-baseline reactor experiments is broadly valuable for many
Neutrino Frontier topics, such as Standard Model oscillation parameter measurements (NF01) sterile oscil-
lations (NF02) and CEvNS measurements and physics (NF03 and NF06), as well as for fields beyond the
Neutrino Frontier, such as fundamental and applied nuclear science [25–29]. A more complete description
of the utility of enhanced reactor flux and spectrum knowledge is provided in another LOI [30].

PROSPECT-II Experimental Summary
Motivated by this physics, the PROSPECT collaboration plans to develop and deploy an upgraded in-

verse beta decay detector, called PROSPECT-II. PROSPECT-II will build upon the successful PROSPECT-I
design [31], with three primary improvements: PMT deployment outside the liquid scintillator target region,
enhanced environmental isolation and control of the target liquid, and increased target size. This evolution-
ary design can enable a PROSPECT-II deployment in the early 2020’s and the performance of a many-year
physics program encompassing deployment at multiple sites including both highly-enriched (HFIR at Oak
Ridge National Laboratory) and low-enriched (US-based commercial power station) uranium reactor cores.
At HFIR, the PROSPECT-II detector would be sited within the existing PROSPECT-I deployment location,
while both above- and below-ground deployment options or being considered for a full-cycle measurement
at a commercial core.

PROSPECT-II Sterile Oscillation Physics Goals (NF02)
As PROSPECT-I results are statistics-limited, a multi-year PROSPECT-II deployment will greatly en-

hance the experiment’s sterile sensitivity. Figure 1 pictures the expected sensitivity of PROSPECT-II after
two years of running at the HFIR HEU reactor, as well as after adding two-year follow-up runs at a com-
mercial LEU core and then again at HFIR. After just two calendar years of data-taking, PROSPECT-II can
improve upon the sensitivity of current PROSPECT-I results [3] by up to a factor of five. Additional LEU
and HFIR deployments will enable PROSPECT-II to exhibit few-percent-level oscillation measurement pre-
cision over more than a decade in mass splitting, from 0.3 to 6.0 eV2. A longer-term, multi-deployment
PROSPECT-II physics program would result in world-leading limits on θ14 over much the eV-scale regime
and fully span the phase space between high-precision measurements at low ∆m2 by Daya Bay [32] and at
high ∆m2 by KATRIN and other tritium β endpoint measurements [33].
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FIG. 1. Right: Comparison of sensitivities for current PROSPECT-I and future PROSPECT-II datasets. Left: Im-
provement to PROSPECT’s 235U spectrum uncertainties after two years of HFIR-based data-taking.

PROSPECT-II Flux and Spectrum Physics Goals (NF02, NF09)
A two-year deployment of the PROSPECT-II detector at HFIR will produce major improvements beyond

the world-leading precision of PROSPECT-I’s 235U antineutrino spectrum measurements [3, 34]. As shown
in Figure 1, such a deployment will result in a more than two-fold improvement beyond PROSPECT-I’s
measurement precision, due to expected improvements in signal statistics, background reduction, and sys-
tematic uncertainties. This measurement’s precision would rival or exceed that of the theoretical 235U beta-
conversion model [35] over much of the spectrum. Specific scenarios of interest regarding the origin of
the LEU spectrum anomaly, such as it being produced solely by 235U, not at all by 235U, or evenly by all
fission isotopes [17], would be distinguishable from one another at more than 3σ confidence level. As sta-
tistical error will still be the dominant uncertainty contributor after two years, PROSPECT-II’s 235U spec-
trum measurement would continue to benefit with additional years of HFIR data-taking in a many-year
physics program. Subsequent PROSPECT-II deployment at a commercial reactor would produce the first-
ever systematically-correlated measurements of HEU and LEU antineutrino spectra, opening unique new
statistical possibilities for the decomposition of results into individual isotopic antineutrino spectra.

Based on data taken during deployment at HFIR, PROSPECT-II would also be capable of producing
an absolute measurement of the IBD yield of 235U. PROSPECT-II’s measurement would occur at a nearly
identical baseline to that of the ILL neutrino experiment, which observed a 21% deficit relative to the Huber
conversion prediction [36]. Such a PROSPECT measurement, combined with STEREO’s recent short-
baseline HEU flux measurement [37], is likely to have a significant impact on sterile neutrino oscillation
and IBD yield results from global fits of reactor fluxes. Systematics-correlated flux measurements from
PROSPECT-II at both HEU and LEU reactors can result in direct isotopic IBD yield determinations rivalling
the precision of existing theoretical predictions for 235U, 239Pu, and 238U [38].
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