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Abstract: We highlight the exciting prospects for dark matter and dark-sector particle studies in accelerator-
based neutrino experiments. These experiments, consisting generically of high intensity proton fixed tar-
get/beam dump facilities, can source large fluxes of dark sector particles in many well-motivated models.
We characterize the types of searches that neutrino beam experiments can perform, and emphasize the ad-
vantages of using these experiments in tandem with dedicated dark-sector search experiments.
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Introduction. The nature of dark matter (DM)1 and the origin of neutrino masses2 remain among the
most pressing puzzles in particle physics. Both mysteries may suggest the presence of a dark sector com-
prised of Standard Model (SM) gauge singlet states that interact very weakly with the visible sector through
a portal interaction. Neutrino experiments are by design ideally suited to study very weakly interacting par-
ticles, and this capability naturally extends to searches for DM and other dark sector particles (DSP). In this
Letter we highlight the exciting prospects of current and planned accelerator-based neutrino experiments to
explore the dark sector. In these experiments, as happens with neutrinos, copious fluxes of DM and DSP may
be produced in the high-intensity proton fixed-target/beam dump collisions. These DSP can then be readily
seen using short-baseline or near detectors downstream of the target. Due to the substantial intensity of
the beams and the strong reconstruction capabilities of ongoing and upcoming detectors, accelerator-based
neutrino experiments are poised to make great contributions to the search for beam-produced DM and DSP.
These experiments will therefore play a critical and complementary role in the broader experimental quest
to understand the DM and neutrino mass problems, as we highlight in the remainder of this letter.

Model Production Detection
Higgs Portal K, B decay Decay (`+`−)

Vector Portal
π0, η Decay Scattering (χe−, χX , Dark Tridents)

Proton Bremmstrahlung Decay (`+`−, π+π−)
Drell-Yan Inelastic Decay (χ→ χ′`+`−)

Neutrino Portal π, K, D(s), B decay Decay (many final states)
ALP Portal Meson Decay Decay (γγ)

(γ-coupling dominant) Photon Fusion Inverse Primakoff process
Primakoff Process

Dark Neutrinos SM Neutrino Upscattering + Decay (ν → νD, νD → ν`+`−)
Dipole Portal Dalitz Decay Decay (νD → νγ)

νphilic Mediators SM Neutrino Scattering (Missing /pT , SM Tridents)

Table 1: A selection of models that can be probed by neutrino beam experiments.

Models & Signatures. The phenomenology of a particular dark sector model are, to a large extent,
governed by the structure of the dark sector, including the pattern of portal couplings to SM particles, as well
as the number and mass ordering of dark sector states. A selection of popular dark sector models with their
corresponding production/detection mechanisms at neutrino beam experiments is presented in Table 1. As
highlighted there, the range of potential signatures is quite rich, and includes DSP decays to (semi-)visible
final states and for DM/DSP scattering with SM particles2–40. These models can also be categorized based
on the dominant DM/DSP production mode in the beam, as is shown in Table 1. Several models are testable
using the SM experimental neutrino flux41;42. Neutrino trident signals can be a sensitive probe of new, light
neutrinophilic mediators43–47, as can missing-transverse-momentum searches in neutrino scattering events,
where the neutrino emits an on-shell, invisible mediator48;49. Additionally, so-called “dark neutrino” or
“dipole-portal heavy neutral lepton” models21;26–29;50–52, where the SM neutrinos up-scatter into a new,
unstable state in or near a detector, rely on the SM neutrino flux for searches in neutrino experiments.

Advantages of Neutrino Experiments. As emphasized above, dark sectors give rise to a rich va-
riety of phenomena, leading to striking signatures in a variety of dedicated and multi-purpose terrestrial
experiments and/or astrophysical observatories1;2;53;54. Accelerator-based neutrino experiments provide a
complementary and, in many scenarios, unique probe of DM/DSP. For instance, neutrino beam probes are
insensitive to assumptions about the ambient population of DM or the astrophysical flux of DSP. Further-
more, in contrast to direct detection experiments, where DM scattering occurs at non-relativistic velocities,
the relativistic beam-produced DM/DSP signals are relatively insensitive to the specific Lorentz structure
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of the interactions. In comparison to other terrestrial probes, neutrino beam experiments offer several sig-
nificant advantages. These include the enormous collision luminosities inherent in high-intensity proton
fixed target experiments, as well as the excellent particle identification and reconstruction capabilities of
modern neutrino detectors that help to distinguish DSP signals from beam-related and cosmic backgrounds.
Timing measurements offer another important experimental handle along with the energy measurement to
distinguish the DM/DSP relative to SM neutrinos55–58. For certain signatures with irreducible SM neutrino
backgrounds (e.g., DM scattering), even greater sensitivity is possible if neutrino experiments are run in a
beam-dump mode, in which the proton beam is dumped directly at the absorber. On the other hand, many
motivated DM/DSP searches are most effectively carried out in neutrino or anti-neutrino run mode, partic-
ularly those in which the SM neutrino flux, or a new particle flux from light, charged mesons, is relevant.
With this strong physics case, it is also worth noting that many new experiments are planned, funded, built,
and operating over the next decade. The opportunities presented here therefore do not demand an excessive
amount of new resources.

The Experimental Landscape. Many previous or currently-operating neutrino experiments have demon-
strated sensitivity to DM and DSP models of the type in Table 1. Among these are CHARM59–61, Nu-
Cal35;62;63, MINOS, MiniBooNE5;8;16;23;26–28;64 (and its dedicated DM search55;65;66), MINERvA29, Ar-
goNeuT67;68, T2K69, MicroBooNE56;70, and JSNS2 24;58. Experiments studying CEνNS can also provide
powerful DSP probes, including the accelerator-based experiments such as COHERENT11;30;57;58;71 and
CCM58;72, as well as reactor-based experiments like MINER, CONUS, and CONNIE73. In the near future,
the Fermilab SBN program will begin to explore these models with the SBND, MicroBooNE (already oper-
ating), and ICARUS experiments74–76. Finally, in the coming decade, DUNE will improve on these searches
with its rich near detector complex15;23;36;49;67;77–79.

Tools. New tools are being developed to study DM and DSP models in a robust way at these experi-
ments. This includes improved calculation and simulation of production and scattering as relevant. On the
production side, dedicated codes like BdNMC16 and MadDump80 allow for robust simulation of a variety
of DM and DSP production scenarios. An alternative approach relevant for production via meson decay is to
use tweaked output from Geant481 beam simulation codes75. Combining these tools provides a new level of
accuracy in simulating production. Scattering can be complicated to simulate in cases where DM scatters by
interacting with nuclear matter. Dedicated neutrino Monte Carlo codes such as GENIE82;83 contain detailed
nuclear models to account for elastic and inelastic scattering, nuclear structure, and final state interactions
of particles escaping a struck nucleus. A new tool84 has been developed to use GENIE to generate DM
scattering events. In addition to allowing for more robust simulation of scattering processes over a range of
energies, this tool, being based on GENIE, can more easily be plugged into simulation chains used by neu-
trino experiments. These tools remain under active development, with new features and models being added.
In the coming years, new phenomenological studies making use of them will serve to enhance the physics
case for the searches we discussed above and allow for robust results that can have improved sensitivity.

Outlook. Neutrino experiments, both those currently operating and those slated to begin soon, will play
a crucial complementary role in probing a wide range of DM/DSP models. In preparation for this wealth
of data, it is important to further study the capabilities of neutrino experiments to probe these models, as
well as to develop appropriate triggers to ensure that these models are not missed. Further development on
the Monte Carlo tools will help obtain increasingly accurate predictions for the signals and allow for the
development of more sensitive analyses. In the case of liquid argon time-projection chamber detectors such
as those of the SBN program, the reconstruction capabilities and algorithms are still under development.
Developing a robust analysis program at SBN will further help future searches at the DUNE ND complex.
Given the rich set of opportunities outlined in this Letter, DM/DSP searches offer an essential expansion to
the physics program of neutrino experiments.
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[74] André de Gouvêa, Patrick J. Fox, Roni Harnik, Kevin J. Kelly, and Yue Zhang. Dark Tridents at
Off-Axis Liquid Argon Neutrino Detectors. JHEP, 01:001, 2019.

[75] Brian Batell, Joshua Berger, and Ahmed Ismail. Probing the Higgs Portal at the Fermilab Short-
Baseline Neutrino Experiments. Phys. Rev. D, 100(11):115039, 2019.

[76] Pedro AN Machado, Ornella Palamara, and David W Schmitz. The Short-Baseline Neutrino Program
at Fermilab. Ann. Rev. Nucl. Part. Sci., 69, 2019.

[77] Jeffrey M. Berryman, Andre de Gouvea, Patrick J Fox, Boris Jules Kayser, Kevin James Kelly, and
Jennifer Lynne Raaf. Searches for Decays of New Particles in the DUNE Multi-Purpose Near Detector.
JHEP, 02:174, 2020.
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