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Introduction: Due to the ability to address the strong CP problem [1–3] and to serve as a dark-matter candidate
(e.g., Refs. [4–6]), axions are a well-motivated and extensively explored extension of the Standard Model (SM).
Theoretical studies (e.g., Ref. [7]) not only investigate the original QCD axion but also have extended to incorporate
general axion-like particles (ALPs) in a wide range of models.

An extensive array of approaches are investigating ALPs by exploiting their coupling with photons, electrons, and
nucleons which include helioscopes: CAST [8–10], haloscopes: Abracadabra [11,12], ADMX [13,14], CASPEr [15],
HAYSTAC [16, 17], light-shining-through-walls: ALPSII [18], interferometry [19, 20]: ADBC [21], DANCE [22],
current and proposed beam dump and fixed target experiments: FASER [23], LDMX [24, 25], NA62 [26], SeaQuest
[27], SHiP [28], hybrids of beam dump and helioscope approaches: PASSAT [29], reactor experiments: MINER,
CONUS etc. [30], dark matter experiments: XENON [31, 32], SuperCDMS [33], PandaX [34] etc.

In this Letter of Interest, we propose to investigate axion-photon and axion-electron couplings at neutrino ex-
periments where a high energy particle (proton or electron) beam impinges on a target. These experiments not only
produce neutrinos but also photons with high intensity. Our proposal is to use these photons to create ALPs via the Pri-
makoff (and/or Compton-like) processes which would then travel to nearby detectors and would be detected via decay
or scattering induced by the inverse Primakoff or Compton-like processes. The main idea behind this LOI is to utilize
detectors in the next generation neutrino experiments, such as the near detectors at DUNE, Hyper-K (T2HK/T2HKK)
and SBN to detect ALPs produced from the photons at these and future facilities.

ALP search strategy: In order to investigate the ALP parameter space, we will focus on a generic model where
the ALP can couple to either a photon or an electron as described by interaction terms in the Lagrangian of the
form Lint ⊃ −1

4gaγγaFµνF̃
µν − gaeeaψ̄eγ5ψe where a denotes the ALP field and where Fµν is the electromagnetic

field strength tensor and its dual F̃µν = εµνρσFρσ. Due to the photon coupling, ALPs can be produced through the
Primakoff process γ(p1) + A(p2) → a(k1) + A(k2) [35], where A is an atomic target. This interaction is governed
by the strength of the coupling gaγγ and is enhanced by the coherency factor Z2 where Z is the atomic number. The
forward scattering differential cross-section is [36, 37]
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Here α = e2/(4π) is the standard electromagnetic fine structure constant, F 2(t) contains the atomic and nuclear form
factors, and |~pa| is the magnitude of the outgoing three-momentum of the ALP at angle θ relative to the incident photon
momentum. The square of the four-momentum transfer is given by t = (p1 − k1)2 = m2

a − 2Eγ(Ea − |~pa| cos θ) for
a photon of incident energy Eγ that produces an ALP of energy Ea and mass ma.

Within the framework adopted here, once produced, the ALP can generate a detectable signal in several ways.
The ALP could decay to two photons or an electron-positron pair with the well-known decay widths
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which, in conjunction with the ALP energy, fix the decay length. Secondly, the ALP could be detected through the
inverse Primakoff process a + A → γ + A, which has the same differential cross-section as in Eq. (1), with the
alteration that the front-factor 1/4 becomes 1/2 due to the initial spin states including a spin-0 ALP rather than a spin-
1 photon. Therefore, for non-zero gaγγ , the production (via Primakoff) and the scattering (inverse) cross-sections
involving both electron and nucleus in the atom have a Z2 enhancement [36]. Finally, the ALP could interact with
electrons through the inverse Compton-like process, a + e− → γ + e−, which produces a photon from electron
bremsstrahlung as well as an electron recoil for non-zero gaee with an enhancement factor of Z.

Example experiments: We describe below the neutrino experiments which will be utilized to investigate ALPs.
For all these experiments, we plan to perform detailed analyses to estimate the sensitivity of the ALP parameter
space using photons and electrons in the final states emerging from scattering and decays, reflecting the potential
backgrounds from SM processes. Various beam energies at these experiments would allow us to investigate a wide
range of ALP masses (∼ 0 to multi GeV).

• DUNE near detectors [38]: A 120-GeV proton beam hits a graphite target, producing photons copiously via
bremsstrahlung and decays of various mesons such as π0, η0 etc. GEANT4 simulation will be used to estimate
the photon flux at the neutrino target, which would be converted into ALP flux using Primakoff conversion. The
ALPs will be detected at the near detector complex (547 m away from the target) which contains liquid argon
time projection chamber (LArTPC) near detector followed by a large-volume high-pressure gaseous argon TPC.
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Figure 1: (i) Tree-level axion production through the Primakoff process. (ii) Tree-level axion detection through the
inverse Primakoff process. In both cases the axion a coherently scatters with the electric fields of the entire atomic
system Z ≡ (e−, N). (iii) Axion decays in the detector.

The final set of detectors of the DUNE near detector, called SAND, contain a 3D scintillator tracker as an active
neutrino target, a low density tracker and an electromagnetic calorimeter. Both the gaseous argon TPC and
SAND are embedded in a solenoidal magnetic field of about 0.5 T. The TPCs will move off-axis for about 50%
of the time while SAND will remain on axis.

• T2K ND280 [39]: The J-PARC proton beam (30 GeV energy) hits a graphite target and the ND280 detector
is located at 280 m away from the target. It is composed of a few sub-detectors: Pi-Zero detector, two Fine-
Grained scintillation detectors, and three TPCs. The ND280 detector will be upgraded adding extra TPCs for
geometrical coverage, with a 3D scintillator tracker as an active neutrino target, and with timing detectors, and
should start taking data in 2022. Also the proton source will be upgraded during that time. Note that the ND280
detector is also surrounded by a large magnet producing 0.2 T uniform horizontal field.

• Short-Baseline Near Detector (SBND) [40]: A 8 GeV proton beam hits the Be target. The 210 ton (112-ton
active mass) LArTPC detector is located at a distance of 110 m from the target.

• ICARUS using the NuMI beam: ICARUS is a 476 ton effective mass LArTPC detector located on the Short-
Baseline neutrino beam [41], like SBND, but at a distance of 600 m from the target. ICARUS acts also as a 6◦

off-axis detector for the intense 120 GeV proton NuMI beam, at a distance of 800 m from the corresponding
proton-carbon target.

Summary: While the studies we present will focus on neutrino experiments in immediate and intermediate future,
we are confident that ALP searches could continue through the experiments, beyond them, leveraging high intensity
proton beams capable, large volume near detector facilities. So, this will be an important physics opportunity that can
be taken in both the neutrino physics program and the rare process physics program throughout the coming decade
and beyond.
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