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Abstract: This Letter of Interest discusses the opportunity of axion-like particle searches at reactor-based neutrino
facilities which are featured by a very large flux of photons which can be converted into axion-like particles via the
Primakoff effect with an atom and/or a Compton-like process with an electron in the reactor core. The produced
axion-like particles then travel to a detector where they can leave signatures by decaying to a photon/electron pair
and/or scattering off an atom/electron via the inverse Primakoff/Compton-like process.
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Introduction: Models of axions are a well-motivated and extensively explored extension of the Standard Model
(SM) due to the capability to address the strong CP problem [1–3] and to serve as a dark-matter candidate (e.g.,
Refs. [4–6]). This has inspired various theoretical and phenomenological studies (e.g., Ref. [7]) for investigating not
only the original QCD axion but general axion-like particles (ALPs) in a wide range of models.

A variety of approaches have been adopted to explore parameter space of the ALP, especially in terms of its
couplings to photons, electrons, and nucleons according to its mass. Examples include helioscopes: CAST [8–
10], haloscopes: Abracadabra [11, 12], ADMX [13, 14], CASPEr [15], HAYSTAC [16, 17], light-shining-through-
walls: ALPSII [18], interferometry [19, 20]: ADBC [21], DANCE [22], current and proposed beam dump and fixed
target experiments: FASER [23], LDMX [24, 25], NA62 [26], SeaQuest [27], SHiP [28], hybrids of beam dump and
helioscope approaches: PASSAT [29], dark matter experiments: XENON [30, 31], SuperCDMS [32], PandaX [33]
etc.

In this Letter of Interest, we discuss the exploration of ALP-photon and ALP-electron couplings at reactor neutrino
experiments [34]. A reactor can produce not only neutrinos for the CEνNS measurement but photons with very high
intensity, e.g., ∼ 1029 photons per year for a Giga-watt reactor. Our proposal in Ref. [31] is to make use of these
photons to create ALPs via the Primakoff (and/or Compton-like) processes which would then travel to nearby detectors
and would be detected via decay or scattering induced by the inverse Primakoff or Compton-like processes. The main
idea behind this LOI is to utilize detectors in ongoing and projected reactor neutrino experiments such as CONNIE,
CONUS, MINER, ν-cleus, and SoLid to detect ALPs produced from the photons at their and future reactors.

ALP search strategy: In order to explore the ALP parameter space, we focus on a generic model where the ALP
can couple to either a photon or an electron with respective coupling strengths parameterized by gaγγ and gaee, as
described by interaction terms in the Lagrangian of the form

Lint ⊃ −
1

4
gaγγaFµνF̃

µν − gaeeaψ̄eγ5ψe (1)

where a denotes the ALP field and where Fµν is the electromagnetic field strength tensor and its dual F̃µν = εµνρσFρσ.
Due to the photon coupling, ALPs can be produced through the Primakoff process γ(p1) + A(p2)→ a(k1) + A(k2)
[35], where A is an atomic target [see Figure 1(i)]. This interaction is governed by coupling gaγγ and is enhanced
by the coherency factor Z2 where Z is the atomic number. The differential cross-section for the forward scattering
is [36, 37]

dσP
d cos θ

=
1

4
g2aγγαZ

2F 2(t)
|~pa|4 sin2 θ

t2
(2)

Here α = e2/(4π) is the standard electromagnetic fine structure constant, F 2(t) contains the atomic and nuclear form
factors, and |~pa| is the magnitude of the outgoing three-momentum of the ALP at angle θ relative to the incident photon
momentum. The square of the four-momentum transfer is given by t = (p1 − k1)2 = m2

a − 2Eγ(Ea − |~pa| cos θ) for
a photon of incident energy Eγ that produces an ALP of energy Ea and mass ma. ALPs can also be produced through
an s- plus u-channel Compton-like scattering process on electron targets γ + e− → a+ e− [38–40].

Within the framework described here, once produced, the ALP can generate a detectable signal in several ways.
First, the ALP could decay to two photons or an electron-positron pair [see Figure 1(iii)] with the well-known decay
widths
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g2aγγm
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which, in conjunction with the ALP energy, fix the decay length. Second, the ALP could be detected through the
inverse Primakoff process a + A → γ + A [see Figure 1(ii)], which has the same differential cross-section as in
Eq. (2), with the alteration that the front-factor 1/4 becomes 1/2 due to the initial spin states including a spin-0 ALP
rather than a spin-1 photon. Therefore, for non-zero gaγγ , the production (via Primakoff) and the scattering (inverse)
cross-sections involving both electron and nucleus in the atom have a Z2 enhancement [36]. Finally, the ALP could
interact with electrons through the inverse Compton-like process, a + e− → γ + e−, which produces a photon from
electron bremsstrahlung as well as an electron recoil for non-zero gaee with an enhancement factor of Z.

Example experiments and expected sensitivity reaches: We performed a study to estimate the experimental sensi-
tivity reaches expected under the proposed ALP search strategy, taking several benchmark reactor-based experiments
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Figure 1: (i) Tree-level ALP production through the Primakoff process. (ii) Tree-level ALP detection through the
inverse Primakoff process. In both the (i) and (ii) cases the ALP a coherently scatters with the electric fields of the
entire atomic system Z ≡ (e−, N). (iii) ALP decays in the detector.

which are MINER, ν-cleus, CONNIE, and CONUS [34]. Approximate specifications for their reactor and detector
benchmarks are summarized in the below table. Background rates in DRU (kg−1keV−1day−1) are based on the rates
that appear in the region of interest (ROI) of each respective experiment. Exposures are based on a 3-year run period.

Experiment Core thermal power Core proximity Background rate in ROI Exposure
MINER (Ge) 1 MW 2.25 m 100 DRU 4,000 kg·days

ν-cleus (CaWO4) 4 GW 40 m 100 DRU 10 kg·days
CONNIE (Si CCD) 4 GW 30 m 700 DRU 100 kg·days
CONUS (Ge PPC) 4 GW 17 m 100 DRU 4,000 kg·days

Our analysis using photons and electrons in the final state emerging from scattering and decays suggests that these
experiments can reach gaγγ ∼ 10−6 GeV−1 for ALP of a few MeV and gaee ∼ 10−5−10−6 forma . 1 MeV, allowing
us to explore a wide range of parameter space that the existing laboratory-based ALP searches have never probed [34].
In particular, for the parameter space of gaγγ , these experiments can be sensitive to (part of) the “cosmological
triangle” region. Overall, they can provide complementary information.

Future plans: It may be interesting to explore the data collected by near reactor experiments like MINER, designed
for very short distance neutrino oscillations searches. As an example, SoLid [41] is a new generation neutrino experi-
ment that aims to address key challenges for high precision reactor neutrino measurements at very short distances. The
1.6 ton plastic scintillator detector, consisting of 5x5x5 cm3 sized cubes, is placed between 6 and 9 meters from the
core of a research reactor with a power of 60-80 MW. The detector has an energy resolution of about 14%

√
E(MeV)

for E > 0.5 MeV. About 400 days with reactor-on data have been collected so far and the experiment will continue
to take data with an upgraded detector in the next years. Specific experimental triggers may be required to maximize
the sensitivity for axion decay or scattering signatures, and can be studied within this project.

Summary: While the studies we present focus on reactor neutrino experiments in the present and near future, we
believe that ALP searches could continue through the experiments, beyond them, leveraging high-intensity low-energy
neutrino experiments including CEνNS. So, this will be an important physics opportunity that can be taken in the
neutrino physics program throughout the coming decade.
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