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Abstract:
The next Galactic core-collapse supernova will be an unprecedented opportunity for multi-messenger

observations of the death of a massive star. It will not only provide the first real-time measurements of the
phase change of a stellar core into a neutron star or a black hole, but also yield evidence (or an absence of
evidence) for a number of well-motivated extensions of the Standard Model. For multi-wavelength follow-
up of the collapse, measurements of supernova neutrinos provide a crucial early warning to prepare for
observations of the shock breakout and early post-explosion phase. During the past decade, the IceCube
Neutrino Observatory has provided a high-statistics, > 99%-uptime monitor for supernova neutrinos. With
the proposed extension of IceCube in the coming decade, IceCube-Gen2, the observatory will enhance its
supernova monitoring by doubling its photocathode area, improving its resolution of the supernova neutrino
energy spectrum, and significantly reducing detector backgrounds. IceCube and IceCube-Gen2 will play a
leading role in the search for these very rare and scientifically priceless astrophysical events.

1Full author list available at https://icecube.wisc.edu/collaboration/authors/snowmass21 icecube
2Full author list available at https://icecube.wisc.edu/collaboration/authors/snowmass21 icecube-gen2
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Supernova Detection with IceCube and IceCube-Gen2
Core-collapse supernovae (CCSNe) are triggered by the collapse of the iron cores of massive stars at the

end of their supergiant phase. A CCSN in the Milky Way will provide a unique multi-messenger probe of
the death of a star, and will be a rich laboratory for fundamental physics. Neutrinos play a major role driving
the explosion and cooling the stellar remnant after core collapse1–5, with 99% of the gravitational binding
energy of the stellar remnant converted into neutrinos of average energy 10-20 MeV1. The neutrino burst
occurs in three stages: (1) an intense flash of νe due to electron capture, lasting ∼ 10 ms; (2) production of
νe and ν̄e over ∼ 1 s as matter accreting on the remnant cools via neutrino emission; and (3) a cooling tail
detectable for ∼ 10 s to 100 s as the core, now a protoneutron star, emits neutrinos of all flavors.

The IceCube Neutrino Observatory is a cubic-kilometer scale neutrino detector embedded 1.4 km below
the surface of the clear glacial ice at the South Pole6;7. The detector is optimized to reconstruct neutrinos
above 10 GeV, but due to its large volume and the cold environment, it is sensitive to the inverse beta
decay of ν̄e events from the accretion and cooling phases of a core collapse8;9. Although the Cherenkov
light produced by individual ν̄e interactions is insufficient to reconstruct individual supernova neutrinos in
IceCube, the supernova ν̄e burst will produce a significant correlated rise above background in hit rates in the
detector. The hits above background provide a detailed neutrino light curve from a core-collapse supernova
in the Milky Way.

High-Statistics Measurements of Accretion and Cooling
The predicted neutrino flux from a supernova can easily vary by an order of magnitude or more10–12,

with predictions affected by astrophysical uncertainties such as the mass and equation of state of the stellar
progenitor13–15, the distance to the progenitor9;16, and the details of supernova simulation codes. Thus, high
statistics are crucial. Due to its volume, IceCube will record Galactic supernova neutrinos with excellent
sensitivity regardless of the details of the explosion or its location in the Milky Way16.

High-Uptime Monitoring for Local CCSNe
The rate of Galactic CCSNe is thought to be 1-2 per century, but the last optically-observed core collapse

supernova in the Milky Way occurred over 400 years ago. The next such event will be a once-in-a-lifetime
opportunity, making continuous monitoring essential. The IceCube detector has an uptime in excess of
99.7% for supernova monitoring16;17, and it provides crucial early-warning capability for optical follow-up.
IceCube is a key component of the SuperNova Early Warning System (SNEWS)18;19, a network of neutrino
detectors monitoring the neutrino sky for nearby CCSNe.

IceCube and IceCube-Gen2: Current and Future Capabilities
During the next decade, improvements to supernova searches in IceCube20 and the commissioning of

the proposed IceCube-Gen2 detector21 will greatly enhance the value of a supernova neutrino detection.

• IceCube has improved the model independence of its online supernova trigger using an adaptive/self-
learning algorithm22, and has achieved sub-ms precision in its light curve with a triggered offline
supernova analysis20.

• With the multi-anode design of the photosensors in IceCube-Gen2, the observatory will provide strong
constraints on the mean energy and shape of the supernova neutrino spectrum. The resolution of the
mean energy will improve from > 25% in IceCube to 5% in IceCube-Gen223.

• The enhanced background reduction made possible with multi-anode sensors will grow the CCSN
detection horizon from ∼ 80 kpc in IceCube to ∼ 300 kpc in IceCube-Gen223. This not only provides
much higher sensitivity to CCSN neutrinos from the Milky Way and the Magellanic Clouds, but
also increases the time IceCube can observe the neutrinos in the cooling tail, when the stellar core
transitions to a neutron star or a black hole5.
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Sensitivity to Fundamental Neutrino Properties
Neutrino oscillation and mixing effects are imprinted on the supernova neutrino light curve, allowing us

to probe the properties of neutrinos with IceCube, IceCube-Gen2, and other large neutrino detectors.

• Mass hierarchy. Standard MSW mixing in the dense material of a supernova efficiently converts neutrinos
into definite mass eigenstates. The final states will depend on the mass hierarchy24;25, so a CCSN signal
in IceCube has excellent sensitivity to discriminate between normal and inverted mass ordering9.

• Unique oscillation effects. Supernova neutrinos probe effects that occur only at extreme densities and
energies not accessible in the laboratory, such as collective oscillations from neutrino self-coupling26;27.

Multimessenger Physics
• Black hole formation. In the most massive stars, a core collapse is expected to create a black hole,

visible in neutrinos as a sudden cutoff in the neutrino emission. Such a “failed supernova” may only be
observable in neutrinos, though there is the exciting possibility it would be a multi-messenger neutrino
and gravitational wave (GW) event28–32.

• CCSN Localization. A sharp cutoff in neutrino emission due to black hole formation would enable
excellent localization of the event using IceCube in combination with other detectors33–35.

• Measurement of GW properties. The sharp time structure in the neutrino flux caused by black hole
formation would yield a sensitive measurement of the propagation speed of gravitational waves36.

• Phase transitions in the protoneutron star. IceCube is particularly sensitive to temporal structures in the
accretion-phase and late-time neutrino signal of a CCSN37. A phase transition in the protoneutron star
from hadronic matter to quark matter2;38–42 would produce a second collapse and neutrino burst easily
visible in IceCube9 and potentially GW detectors.

• Protoneutron star rotational modes. In CCSNe with significant rotation in the protoneutron star, neutrinos
detected in IceCube, alone or with GWs, could be used to probe the rotational modes of the system43;44.

• Signatures of hydrodynamical effects. Standing accretion shock instability (SASI) oscillations44–48 would
be observed easily in IceCube and IceCube-Gen220. Not all simulated explosions produce SASI oscilla-
tions49;50, so a non-observation would be an invaluable constraint on CCSN models.

Exotic Nuclear Physics and Searches Beyond the Standard Model
• Protoneutron star equation of state. Neutrinos act as cosmic probes and provide insight into the physics

of the supernova and properties of the resulting protoneutron star14;15. IceCube measurements of the
accretion phase and cooling tail will be sensitive probes of these properties.

• Probing matter in extreme states. “Pasta-like” structures of nucleons may significantly increase neutrino
scattering in the interior of the protoneutron star47;51–53. The increased opacity would produce a corre-
sponding increase in the timescale of neutrino cooling and lengthen the cooling tail well beyond 10 s. The
improved backgroud rejection capability of IceCube-Gen2 will be key to exploring this scenario.

• Searches for axions and axion-like particles (ALPS). Axions would compete with neutrinos to cool the
explosion, reducing neutrino emission in the cooling tail47;54–61. IceCube and IceCube-Gen2 can conduct
“neutrino disappearance” searches that are sensitive to axion production22 and are complementary to
“photon appearance” searches with gamma-ray detectors62–65.

• Searches for sterile neutrinos. Even for very small active-sterile mixing angles, MSW resonances could
produce significant quantities of sterile neutrinos in a supernova66;67. IceCube is sensitive via ν̄e dis-
appearance or, conversely, could contribute to a multi-messenger detection of excess gamma rays and
daughter ν̄e events in the neutrino flux68;69.
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