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Abstract: Since the COHERENT experiment made the first observation of coherent elastic neutrino-
nucleus scattering (CEvNS) in 2017, we have continued to better understand neutrino scattering at low-Q2.
Additionally, detectors made to study CEvNS are capable of pursuing compelling dark matter constraints.
We outline here the strategy for using low threshold detectors to search for an accelerator-produced dark
matter flux consistent with the cosmological dark matter concentration. This detection method is most
sensitive for dark matter masses ∼15 MeV/c2.
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1 Introduction
Known standard model particles only account for roughly 20% of gravitationally-interacting matter [1].

The particle nature of the remaining dark matter is yet to be determined. Experiments searching for
astrophysical WIMPs have consistently improved constraints, but typically lose sensitivity at dark matter
masses below ∼1 GeV/c2 [1]. However, these lower masses are easily accessible with terrestrial laboratories,
leading to several efforts to detect a sub-GeV mass WIMP at accelerators.

Apart from studying CEvNS, accelerator-based experiments capable of detecting low-energy nuclear
recoils are also sensitive to such dark matter particles [2]. A flux of dark matter particles would interact
leaving a nuclear recoil signature but with a spectrum characteristically different from CEvNS in recoil energy
and time. Further, at low energy transfer, the interaction is coherent, analogous to the CEvNS signal, giving
a large cross section which allows for ambitious constraints using a detector of modest scale.

2 Dark Matter at the Spallation Neutron Source (SNS)
Below masses of ∼1 GeV/c2, WIMP dark matter interacting directly with matter is not viable [3].

However, it is possible for such light dark matter particles to interact with matter through a new force,
mediated by a “portal” particle, V , [4]. The SNS produces neutrinos in high intensity p−Hg collisions
through the decay at rest of π+ → µ+νµ and µ+ → e+νeν̄µ, yielding a prompt flux of νµ coincident with the
SNS beam pulse, FWHM = 340 ns, and a flux of νe and ν̄µ delayed by τµ = 2.2 µs. The neutrino flux from
these decays-at-rest is isotropic. Portal particles may be frequently produced at the SNS, predominantly
through the decay π0 → V γ, which would in turn decay to a pair of dark matter particles. As dark matter is
produced through decay in flight, any observed scatters would be coincident with CEvNS from the prompt
νµ flux.

Within this benchmark model [2], the relic abundance of observed dark matter can be calculated and
directly tested. Further, this scheme would directly detect dark matter particles, allowing for the scattering
properties of any detected DM-like excess to be compared against theoretical predictions.

CEvNS scatter from the νµ flux and beam-uncorrelated backgrounds are the dominant backgrounds to
the dark matter search. The beam-uncorrelated background can be measured directly using data out-of-time
with the beam. Systematic uncertainties on the neutrino flux and detector modeling can be constrained using
CEvNS from the delayed flux [5]. This improves understanding of the νµ CEvNS background in the prompt
dark matter ROI giving a convenient control sample for understanding beam background in-situ in a manner
unique to this detection method.

3 COHERENT Plans for Constraining Dark Matter
We propose a phased approach for searching for dark matter using two successive argon scintillation

calorimeters to be designed and deployed the SNS. The ultimate sensitivity of this approach to a accelerator-
produced dark matter flux is beyond the flux that would be expected from the cosmologically observed dark
matter concentration within the benchmark model for dark matter masses between 4 and 100 MeV/c2 with
optimal sensitivity at 15 MeV/c2. These detectors will allow parallel investigation and precision tests of
CEvNS on argon. Argon is an attractive detection material due to its ∼20 keVnr threshold, relatively low
background, and scalability.

For the first stage, a designed argon detector with 610 kg of fiducial mass would be built and assembled
at the SNS. Next, this detector would be upgraded by filling with underground argon [6], which can reduce
the largest background, 39Ar decay, by over two orders of magnitude.

The final stage involves a 10 ton detector in conjunction with the commissioning of the second target
station (STS) at the SNS [7]. The detector would be placed on the axis of the STS utilizing the forward
bias of the dark matter flux [5]. If dark matter is detected, the two target stations at the SNS would allow
simultaneous measurement of the dark matter scatter rate from two different off-axis angles. This would
give an invaluable test of the angular dependence of the excess which could differentiate between a boosted
dark matter flux and the isotropic neutrino flux. This detector would require the construction of a shielded
experimental hall with no open-air connection to the neutron source location. We continue to interface with
ORNL to plan a suitable site. The ultimate reach of this detector can test the couplings required to explain
the relic dark matter flux for scalar dark matter masses between 3 and 100 MeV/c2 [6].
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