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Abstract: The DARWIN collaboration (www.darwin-observatory.org) aims at building the ulti-
mate underground-based direct detection dark matter detector, with a WIMP dark matter sensitivity limited
by irreducible neutrino backgrounds. The core of the detector will have a 40 ton liquid xenon target op-
erated as a dual-phase time projection chamber. The unprecedented large xenon mass, the exquisitely low
radioactive background and the low energy threshold will allow for a diversification of the physics program
beyond the search for dark matter particles. In particular, DARWIN will also be a neutrino observatory:
it will search for the neutrinoless double beta decay of 136Xe, will measure the solar pp and 7Be neutrino
flux via neutrino-electron scattering with high statistics, as well as the 8B solar neutrino flux via coherent
elastic neutrino-nucleus scattering, it will be sensitive to supernovae neutrinos, and will search for a neutrino
magnetic moment. Here we elaborate on the neutrino physics capabilities of DARWIN.
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1 DARWIN neutrino physics goals: overview

The goal of the DARWIN project is to construct and operate a low-background, low-threshold observa-
tory for astroparticle physics with a liquid xenon target that features a background that is only limited by
irreducible neutrino interactions1–3. The technology selected for DARWIN’s inner detector is the xenon
dual-phase (liquid and gas) time projection chamber (TPC). Some of the main advantages of this technol-
ogy are: a very low energy threshold of ∼1 keVee and ∼5 keVnr when reading out both light (S1) and charge
signals (S2); a 3D-reconstruction of the interaction position with mm precision as well as the identification
of multiple scattered events; rejection of electron recoil (ER) backgrounds at the 10−3 level at 50% nuclear
recoil (NR) acceptance down to the low energy threshold based on the charge-over-light (S2/S1) ratio; a
good energy resolution based on the S1 and the S2 signal (σ/E = 0.8% at E = 2.46MeV4). The target-
intrinsic backgrounds 222Rn and 85Kr can be suppressed to extremely low levels by xenon purification,
material selection, detector design as well as S2/S1 discrimination.

The main neutrino physics channels, the focus of this Letter of Intent, in DARWIN are the following

• The low energy threshold, ultra-low background levels and excellent target fiducialization will allow
for a precise measurement of the solar pp-neutrino flux at the 1% level through elastic neutrino-
electron scattering. It will provide access to solar neutrinos from other production channels as well
and constrain the oscillation probability Pee at lowest energies1;5. DARWIN will also measure the
8B solar neutrino flux via coherent elastic neutrino-nucleus scattering and could distinguish between
vector and scalar interactions6.

• Even without isotopic enrichment, DARWIN will contain more than 3.5 tons of 136Xe, a double
beta decaying isotope with Q-value of 2.46 MeV. This will enable the search for the neutrinoless
double beta decay (0νββ) in an ultra-low background environment to investigate the Majorana nature
of neutrinos and lepton number violation1. The projected half-life sensitivity of 2.4 × 1027 yr is
competitive to dedicated 0νββ searches7.

• Other rare decays accessible to DARWIN are double electron capture processes in 124Xe. XENON1T
has recently observed the 2-neutrino double electron capture for the first time – it is the slowest process
in the Universe ever measured directly8. The increased target mass of DARWIN will allow to probe
the neutrinoless decay mode as well (Q-value=2.79 MeV)9. A target depleted in 136Xe would also
allow exploring double beta decays of 134Xe and 126Xe10.

• DARWIN will be a continuous monitor for supernova neutrinos, with sensitivity to all (active) neu-
trino species. A galactic supernova will generate hundreds of events in the target through coherent
scattering off xenon nuclei11. Such a measurement will help to determine the supernovae proper-
ties, as well as the intrinsic properties of neutrinos. Thanks to its sensitivity to all neutrino flavours
and uniquely low energy threshold, DARWIN will be fully complementary to the much larger neu-
trino detectors. It would also be sensitive to neutrinos from galactic Type Ia and failed core-collapse
supernovae12.

• With an energy threshold of 1 keV for ERs, DARWIN can search for an enhanced neutrino magnetic
moment using solar neutrinos, as recently demonstrated by XENON1T13.
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2 Project overview, ongoing R&D and timeline

DARWIN will operate ∼50 t of liquid xenon in a low-background cryostat, surrounded by nested shielding
structures. The core of the experiment is a dual-phase LXe TPC14 containing 40 t of instrumented xenon
target mass. In the baseline design scenario the prompt (S1) and proportional scintillation signals (S2)
are recorded by two arrays of photosensors installed above and below the liquid xenon target. The TPC
is a cylinder of 260 cm diameter and height, with a target volume containing 40 t of xenon, as illustrated
in Figure 1. It is enclosed in a low-background, double-walled titanium cryostat equipped with several
stiffening rings to reduce its total mass. The cryostat is surrounded by a Gd-doped (0.2% by mass) water
Cherenkov shield - as in XENONnT - to mitigate the radiogenic neutron background from materials. The
outermost layer is a water Cherenkov muon shield also acting as a passive shield against the radioactivity of
the laboratory environment.

Figure 1: The DARWIN time projection
chamber instruments about 40 tons of LXe
as active target. The sketch shows a reali-
sation with two photosensor arrays made of
1910 PMTs of 3′′ diameter.

The baseline design of the DARWIN detector follows the successful concepts of XENON1T/nT, also
considering the experience obtained by LUX/LZ and PandaX as well as from the single-phase project
XMASS. However, several technical aspects require R&D studies such as the TPC design, the VUV-
sensitive photosensors, low-background materials, neutron veto, cryogenics and target purification, as well
as the calibration systems. The R&D effort is supported by two European ERC grants, a significant startup
grant by DFG/SIBW (Germany), the German Ministry for Education and Research (BMBF) as well as by
smaller grants at various collaborating institutions. Two large-scale demonstrators to develop and test com-
ponents and operation methods for DARWIN at the real scale of ∼2.6 m are under construction: one full
scale demonstrator for the xy-dimension, and a second one in the full z-dimension, facilities which will be
used by the entire collaboration for various tests. By using about 400 kg of LXe each, the platforms will
allow for testing full-scale DARWIN electrodes in LXe/GXe, the drift of electrons over the full TPC length,
the HV feedthrough, large-scale photosensor arrays, efficient LXe purification, the slow control system, etc.

The collaboration will follow the successful experience from the XENON project, where the more sen-
sitive instrument was always designed and built while the current stage of the project was under operation
and collecting data. The R&D efforts aim at a conceptual design report by the end of 2021, followed by
a technical design report in 2023. Construction of DARWIN would start in 2024, while the XENONnT
experiment is still taking data. Commissioning will begin after the completion of XENONnT in 2026. After
calibrations, a first science run would start in 2027. At present, after a successful LoI submission to the
Laboratori Nazionali del Gran Sasso (LNGS) of INFN, the collaboration was invited to prepare and submit
a CDR to LNGS.
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