
Snowmass2021 - Letter of Interest:
Noble Liquids for the Detection of CEνNS from Artificial Neutrino Sources

Elena Aprile,1 Ethan Bernard,2 Nathaniel Bowden,2 Patrick de Perio,3 Fei Gao,1 Luca Grandi,4

Igor Jovanovic,5 Rafael F. Lang,6 Eli Mizrachi,7 Kaixuan Ni,8 Sergey V. Pereverzev,2

Teal Pershing,2 Guillaume Plante,1 Jianyang Qi,8 Petr Shagin,9 Evan Shockley,4 David Trimas,5

Christopher Tunnell,9 Yuehuan Wei,8 Shawn Westerdale,10 Jingke Xu,2 and Liang Yang8

1Physics Department, Columbia University, New York, NY 10027, USA
2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

3TRIUMF, Vancouver, BC V6T 2A3, Canada
4Department of Physics & Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

5Department of Nuclear Engineering and Radiological Sciences,
University of Michigan, Ann Arbor, MI 48109, USA

6Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
7Department of Physics, University of Maryland, College Park, MD 20742, USA

8Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
9Departments of Physics & Astronomy & Computer Science, Rice University, Houston, TX, USA

10INFN Cagliari, Cagliari 09042, Italy

Coherent elastic neutrino-nucleus scattering (CEνNS) provides a new window to probe neutrino
physics with compact and low energy threshold detectors. Noble liquid detectors, especially liquid
xenon (LXe) and liquid argon (LAr) detectors developed for direct dark matter searches, have
excellent capabilities to detect low energy nuclear recoils produced with CEνNS. Using artificial
neutrino sources, large numbers of low energy CEνNS events can be detected with 100-kg scale noble
liquid detectors, providing a unique opportunity to study non-standard neutrino interactions, sterile
neutrinos and other physics beyond the Standard Model. CEνNS from astrophysical neutrinos will
become an unavoidable background in the next generation dark matter experiments. Understanding
the response of CEνNS events in noble liquids with large statistics from artificial neutrino sources will
enable accurate signal and background modeling for the next generation of dark matter experiments.
Further, such compact neutrino detectors can measure the anti-neutrinos produced in the nuclear
fuel cycle for nuclear safeguards applications.
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I. THE NEED OF CEνNS DETECTION IN NOBLE LIQUIDS

Coherent elastic neutrino-nucleus scattering (CEνNS) is a Standard Model process mediated by neutral weak
currents [1], with a cross-section approximately proportional to N2, the square of the number of neutrons in the
nucleus. A precise measurement of the CEνNS cross section can probe the non-standard neutrino interactions (NSI) [2–
4] and search for sub-GeV accelerator produced dark matter [5]. CEνNS from solar and atmospheric neutrinos [6] will
become an unavoidable background for the upcoming and next generation dark matter direct detection experiments.
The process also has one of the largest cross sections relevant for supernova dynamics and plays an important role in
supernova core-collapse processes [7, 8].

Despite the large cross section, detecting low energy (sub-keV to tens of keV) nuclear recoils (NR) from CEνNS
remains challenging. As of writing, the detection of a CEνNS event has only been achieved by the COHERENT
experiment above several keV with a CsI detector [9] and a single-phase liquid argon (LAr) detector [10], using a
pulsed source of neutrinos from the Spallation Neutron Source (SNS). The program studies a suite of detectors of
various targets, either in operation or planned [11, 12]. Despite their strong capability to detect low energy nuclear
recoils, dual-phase xenon and argon detectors have not been used for studying CEνNS at SNS.

Since CEνNS has no neutrino energy threshold and a larger cross section than inverse beta decay (IBD) at fission
anti-neutrino energies, it may provide new capabilities in anti-neutrino monitoring for nuclear safeguarding purposes,
such as detecting anti-neutrinos produced by nuclear reactors [13–15] and spent fuel [16]. Uniquely, CEνNS could
detect breeding blankets in nuclear reactors, where the anti-neutrino spectrum is below the IBD threshold [17]. Unlike
the SNS, in reactor monitoring applications the signal source is not controlled in time and the fission antineutrino
spectrum largely lies below 10 MeV. Consequently, the recoil energies of interest are low ( ∼ 0.1 − 5 keV). The
development of a sub-keV threshold detector with suppressed background is needed to face this challenge.

In dark matter direct detection experiments, understanding the response of solar and atmospheric neutrinos CEνNS
in noble liquids is important to the background modeling of the upcoming multi-ton scale liquid xenon(LXe)-based
PandaX-4T [18], XENONnT [19], LZ [20] and LAr-based DarkSide-20k [21] experiments. These large experiments,
with high electron recoil background rejection capability above a few keV nuclear recoil threshold, are expected to
observe tens of CEνNS events from 8B solar neutrinos with ∼10-20 ton-years of exposure through analysis of paired
scintillation and ionization signals. Sensitivity to light dark matter grows dramatically as the nuclear recoil threshold
is lowered, and there is a growing interest in decreasing the threshold below 1 keV by separately analyzing only the
ionization signals [22, 23]. Understanding the response of LXe and LAr to CEνNS from a few keV down to sub-keV
recoil energies is crucial to this approach to light dark matter detection.

This is a letter of intent to further develop the noble liquid detector technology to enhance its sensitivity to sub-keV
nuclear recoils, build and deploy 100-kg scale compact dual-phase noble element detectors at the SNS or near reactors
for neutrino physics and practical applications.

II. SIGNAL RATES FROM TWO ARTIFICIAL NEUTRINO SOURCES

The events from CEνNS are low energy nuclear recoils, with energy depending on the energy of the neutrinos and
the mass of the target atoms. The expected CEνNS event rate in a liquid xenon detector ∼20 m from source of
neutrinos at the SNS is shown in Fig.1 (left), calculated following the procedure in [12]. The energy of the nuclear
recoils extends to a few tens of keV, allowing a liquid xenon detector to distinguish and suppress the electron recoil
background for a sensitive detection of CEνNS. More than 1000 CEνNS events will be observed in six months of
operation of a 100-kg liquid xenon detector above a threshold of 5 keV.

Reactor anti-neutrinos produce CEνNS signals with even lower energies than SNS neutrinos. The expected CEνNS
rates in noble element targets from reactor anti-neutrinos are shown in Fig. 1 (right), based on the reactor anti-
neutrino spectrum in [24] with an anti-neutrino flux of 6 × 1012 cm−2s−1[13] at a distance of 25-m from the core of a
3 GW thermal power reactor. The lighter noble elements provide relatively higher energy nuclear recoils from reactor
CEνNS. Regarding the detector technology, liquid xenon detectors have demonstrated sensitivities in the sub-keV
region, down to a single ionization electron, corresponding to a nuclear recoil energy threshold of 300 eV [25, 26].
Liquid argon detectors also have sensitivities to single electrons [23], but the signal response in the sub-keV energy
region [27, 28] remains to be studied. Liquid neon [29–31] and helium detectors [32–34] are much less developed.
Krypton is not a feasible target due to its large intrinsic 85Kr background. With sub-keV nuclear recoil thresholds,
noble liquid detectors, especially liquid argon and liquid xenon, can observe ∼1000 CEνNS events per day in a 100-kg
target.
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FIG. 1. Left: Expected nuclear recoil spectrum and event rate in natural xenon from each of the neutrino flavors (νµ, νe and
ν̄µ) for a detector at ∼20 m from the source of neutrinos at the Spallation Neutron Source. Right: Integrated CEνNS rates
above a threshold energy in different noble elements from reactor anti-neutrinos with a flux of 6 × 1012cm−2s−1 and assuming
a composition of 7.6% 238U, 25% 235U, 14.8% 241Pu, 51% 239Pu fissioning elements.

III. DETECTOR TECHNOLOGY DEVELOPMENT

Thanks to the rapid development of detector technology for dark matter search, liquid xenon and argon detectors
of 10 kg [35–37], 100-kg [38–41] and ton scale [42–44] were built and successfully deployed in the last two decades.
These noble liquid time projection chambers (TPCs) typically target the detection of nuclear recoils above a few keV.
Interactions at lower energies such as those expected from reactor neutrino CEνNS and light dark matter particles
have been sought by analyzing only the ionization signal but to date the sensitivity is limited by backgrounds in the
few-electron region [22, 23, 45, 46]. In xenon TPCs, the origins of the low-energy electron background have been
thoroughly studied [47] and the RED-100 detector [48, 49] has achieved a low background rate down to 4 ionization
electrons while operating at the Earth’s surface. The electron backgrounds in argon TPCs [23] are believed to have
similar origins to that in xenon TPCs, so a strong synergy may be found in developing the background mitigation
techniques for TPCs with these two targets.

Improvements of the signal detection efficiency and suppression of the single-to-few electron backgrounds are needed
to enhance the capability to sense sub-keV nuclear recoils in these detectors. Some key technical developments include:
1) Improving the scintillation light detection with in-target wavelength shifting, such as xenon-doping in argon [50–55]
or neon [56] and using high quantum efficiency photo-sensors to enhance the event rate and electron recoil background
rejection. 2) Improving the liquid purity by using hermetically sealed time projection chambers [57, 58] employing
large UV-transparent windows, low-outgassing materials, and modular photo-sensors with integrated electronics. 3)
Identifying the chemical composition of impurities in the liquid target using luminescence spectroscopy, and developing
purification techniques using chemical and physical absorption in the liquid phase. 4) Optimizing single-electron
detection by electroluminescence in the gas or liquid [59] phases with a simplified detector design. 5) Developing a
modular design that permits independent assembly and cleaning of detector components, including an integrated high
voltage system, in a clean room environment to prevent the introduction of deleterious particles.

The detector techniques developed for this research are applicable to light dark matter search [60] and generation-3
(G3) noble liquid experiments for sensing dark matter and astrophysical neutrinos [61].

IV. SUMMARY

In this letter, we present the case of compact (100-kg scale) noble liquid detectors for CEνNS detection of neutrinos
from either a spallation neutron source or a nuclear reactor. Successful deployment of such low-background, sub-
keV threshold detectors will allow the detection of CEνNS in Ar or Xe targets, probing non-standard neutrino
interactions [62], neutrino magnetic moments [63], sterile neutrinos [64, 65] and other physics beyond the Standard
Model [66]. It will also provide input for a precise signal and background modeling for LAr and LXe based dark matter
experiments and a new way to monitor the nuclear fuel cycle using neutrinos for nuclear safeguarding applications.
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