Snowmass2021 - Letter of Interest

The JUNO-TAO Experiment

NF Topical Groups: (check all that apply \Box/\blacksquare)

□ (NF1) Neutrino oscillations

- (NF2) Sterile neutrinos
- (NF3) Beyond the Standard Model
- \Box (NF4) Neutrinos from natural sources
- \Box (NF5) Neutrino properties
- \Box (NF6) Neutrino cross sections
- (NF7) Applications
- \Box (NF8) Theory of neutrino physics
- (NF9) Artificial neutrino sources
- (NF10) Neutrino detectors
- \Box (Other) [*Please specify frontier/topical group(s*)]

Contact Information:

Guofu Cao (Institute of High-Energy Physics) [caogf@ihep.ac.cn] Juan Pedro Ochoa Ricoux (University of California, Irvine) [jpochoa@uci.edu] Wei Wang (Sun Yat-sen University) [wangw223@sysu.edu.cn] Liangjian Wen (Institute of High-Energy Physics) [wenlj@ihep.ac.cn] Michael Wurm (University of Mainz) [michael.wurm@uni-mainz.de] Liang Zhan (Institute of High-Energy Physics) [zhanl@ihep.ac.cn] Collaboration: JUNO

Authors: the JUNO collaboration (a full author list is included after the references).

Abstract: The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). The experiment consists of a ton-level liquid scintillator detector placed at ~ 30 m from a 4.6 GW_{th} reactor core of the Taishan Nuclear Power Plant. The main goal is to measure the reactor antineutrino spectrum with sub-percent energy resolution, providing a reference spectrum for JUNO as well as a benchmark for nuclear databases and other experiments. The detector design consists of a spherical acrylic vessel containing 2.8 ton gadolinium-doped liquid scintillator viewed by 10 m² Silicon Photomultipliers (SiPMs) with $\sim 50\%$ photon detection efficiency and providing around 95% photon coverage. The photoelectron yield will be around 4500 per MeV, an order of magnitude higher than any existing large-scale liquid scintillator detector. The detector will operate at -50°C to mitigate the impact of SiPM dark noise and will be well shielded from cosmogenic backgrounds and ambient radioactivity. About 2000 reactor antineutrinos will be collected per day with an expected background-to-signal ratio of $\sim 10\%$. Operations are expected to begin as soon as 2022.

Key words: reactor antineutrino spectrum, JUNO-TAO

Physics Motivation

The three-neutrino oscillation paradigm is well supported by experiments using solar neutrinos, atmospheric neutrinos, accelerator neutrinos and reactor antineutrinos. The three neutrino mixing angles, θ_{12} , θ_{13} , θ_{23} , as well as the two independent mass-squared splittings, $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$, $|\Delta m_{31}^2| \equiv |m_3^2 - m_1^2|$ (or $|\Delta m_{32}^2|$), where m_1, m_2 , and m_3 are the three mass eigenvalues, have been measured to few-percent precision. However, even assuming neutrinos are Dirac fermions, the Dirac CP-violation phase and the neutrino mass ordering (NMO) are still unknown. The Jiangmen Underground Neutrino Observatory (JUNO) experiment in South China aims to resolve the NMO and further improve the measurements of θ_{12} , Δm_{21}^2 , and $|\Delta m_{31}^2|$ to sub-percent precision by measuring the oscillated energy spectrum of the antineutrinos emitted by eight reactors from the Yangjiang and Taishan nuclear power plants at a distance of 53 km. To meet these two major goals, the JUNO detector is designed to reach an energy resolution of $3\%/\sqrt{E[MeV]}$, where *E* is the visible energy [1]. Recent experiments such as Daya Bay have shown that the predicted antineutrino spectrum disagrees with observations [2]. Moreover, it has been speculated that unknown fine structure in the energy spectrum [3, 4] could affect the sensitivity of JUNO experiment [5, 6]. In order to mitigate this possibility, a satellite experiment called the Taishan Antineutrino Observatory (JUNO-TAO) has been proposed to provide a reference spectrum to JUNO [7].

The Taishan Nuclear Power Plant is located in the Chixi town of Taishan city in the Guangdong province. This plant currently hosts two European Pressurised Reactors (EPR) in operation, each with 4.6 GW of thermal power. JUNO-TAO is located in a basement 9.6 m underground, outside of the concrete containment shell of one of the two reactors. The primary goal of JUNO-TAO is to eliminate any possible model dependence in JUNO's oscillation measurements by providing a reference spectrum. Although a $3\%/\sqrt{E[MeV]}$ energy resolution would be sufficient to accomplish this goal, it is advantageous to achieve a higher energy resolution to study the fine structure of the reactor antineutrino spectrum and produce a state-of-the-art measurement that could uncover unexpected features. Thus, the JUNO-TAO experiment has been designed to have the following additional scientific goals: 1) provide a benchmark measurement for nuclear databases; 2) provide increased reliability in measured isotopic antineutrino yields; 3) provide an opportunity of improving nuclear physics knowledge of neutron-rich isotopes; 4) search for light sterile neutrinos with a mass-scale around 1 eV; 5) verify the technology for reactor monitoring and nuclear safeguard applications.

Design of the JUNO-TAO Experiment

The conceptual design of JUNO-TAO is shown on Figure 1. The Central Detector (CD) will collect reactor antineutrinos using 2.8 tons of Gadolinium-doped Liquid Scintillator (GdLS) inside a spherical acrylic vessel with a diameter of 1.8 m. To properly contain the energy deposition of gammas from the Inverse Beta Decay (IBD) positron annihilation, a position cut will be applied to remove events whose vertices are within 25 cm from the acrylic wall, resulting in a 1 ton fiducial mass. The IBD event rate in the fiducial volume is expected to be about 2000 (4000) events per day with (without) the detection efficiency taken into account. To reach the desired energy resolution, more than 4000 high-performance silicon photomultiplier (SiPM) tiles, each of dimensions 5 cm \times 5 cm, cover ~95% of the acrylic vessel and collect scintillation light with > 50% efficiency. The SiPM tiles are installed on the inner surface of a spherical copper shell with an inner diameter of 1.882 m. The copper shell is installed in a cylindrical stainless steel tank with a 2.1 m outer diameter and 2.2 m height. The stainless steel tank is filled with Linear Alkylbenzene (LAB), which serves as solvent for the GdLS and as as a buffer to shield the target from the outer tank's radioactivity. The LAB also allows to stabilize the temperature, and to optically couple the acrylic vessel to the SiPMs. Cooling pipes are deployed on the outer side of the copper shell and the inner side of the stainless steel tank. They are used to cool down the CD to -50° C, reducing the dark noise of SiPMs to $\sim 100 \text{ Hz/mm}^2$ and significantly suppressing its impact on the energy resolution. The stainless steel tank is insulated with 20 cm thick Polyurethane (PU) to reduce heat leakage. The central detector is surrounded by a 1.2 m thick water tank on the sides and 1 m High Density Polyethylene (HDPE) on the top as a shield against ambient radioactivity and cosmogenic neutrons. Cosmic muons are tagged by plastic scintillator strips on the top and the photomultiplier tubes that instrument the water tanks.

A photoelectron yield of about 4500 per MeV is expected from simulations, corresponding to an energy resolution of $1.5\%/\sqrt{E[{\rm MeV}]}$ in photoelectron statistics. When approaching the energy resolution limit of LS detectors, non-stochastic effects become prominent. At low energies, the contribution from the LS quenching effect could be quite large. At high energies, the smearing from neutron recoil of IBD becomes dominant. Taking into account the projected dark noise, cross-talk, and charge resolution of the SiPMs, the expected energy resolution of TAO will be sub-percent in most of the energy region of interest.

The muon and cosmogenic neutron rates in the JUNO-TAO site have been measured to be 1/3 of what they are in the surface. Simulations show that the accidental and cosmogenic backgrounds like fast neutrons and ${}^{8}\text{He}/{}^{9}\text{Li}$ decays can be controlled to < 10% of the signal with proper shielding and muon vetos.

Figure 1: Schematic view of the TAO detector, which consists of a liquid scintillator target with outer shielding and a veto system. Dimensions are displayed in mm.

Conclusions

In summary, the JUNO-TAO experiment is an important part of the JUNO experiment, and a leading player in the worldwide effort to precisely characterize the spectral shape of reactor antineutrinos. The detector R&D started in 2018. A recipe for GdLS has been developed and has been shown to have good transparency and light yield at -50° C. The SiPMs and the readout electronics have been preliminary tested at the same temperature. A first prototype with 100 L of GdLS has been used to verify the cryostat design. A fullsize prototype detector will be tested in 2021. A conceptual design report was released in 2020 [7]. The full JUNO-TAO detector is expected to start operations in 2022, around the same time as the larger JUNO experiment.

References

- [1] JUNO, F. An et al., Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016), arXiv:1507.05613.
- [2] Daya Bay, D. Adey et al., Extraction of the ²³⁵U and ²³⁹Pu Antineutrino Spectra at Daya Bay, Phys. Rev. Lett. **123**, 111801 (2019), arXiv:1904.07812.
- [3] D. Dwyer and T. Langford, Spectral Structure of Electron Antineutrinos from Nuclear Reactors, Phys. Rev. Lett. **114**, 012502 (2015), arXiv:1407.1281.
- [4] A. Sonzogni, M. Nino, and E. McCutchan, Revealing Fine Structure in the Antineutrino Spectra From a Nuclear Reactor, Phys. Rev. C **98**, 014323 (2018), arXiv:1710.00092.
- [5] Z. Cheng, N. Raper, and C. F. Wong, Potential impact of sub-structure on the resolution of neutrino mass hierarchy at medium-baseline reactor neutrino oscillation experiments, (2020), arXiv:2004.11659.
- [6] F. Capozzi, E. Lisi, and A. Marrone, Mapping reactor neutrino spectra from TAO to JUNO, (2020), arXiv:2006.01648.
- [7] JUNO, A. Abusleme et al., TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution, (2020), arXiv:2005.08745.

The JUNO Collaboration:

Angel Abusleme⁵, Thomas Adam⁴⁵, Shakeel Ahmad⁶⁷, Rizwan Ahmed⁶⁷, Sebastiano Aiello⁵⁵, Fengpeng An²⁹, Guangpeng An¹⁰, Qi An²², Giuseppe Andronico⁵⁵, Nikolay Anfimov⁶⁸, Vito Antonelli⁵⁸, Tatiana Antoshkina⁶⁸, Burin Asavapibhop⁷², João Pedro Athayde Marcondes de André⁴⁵, Didier Auguste⁴³, Andrej Babic⁷¹, Wander Baldini⁵⁷, Andrea Barresi⁵⁹, Eric Baussan⁴⁵, Marco Bellato⁶¹, Antonio Bergnoli⁶¹, Enrico Bernieri⁶⁵, Thilo Birkenfeld⁴⁸, Sylvie Blin⁴³, David Blum⁵⁴, Simon Blyth⁴⁰, Anastasia Bolshakova⁶⁸, Mathieu Bongrand⁴³, Clément Bordereau^{44,39}, Dominique Breton⁴³, Augusto Brigatti⁵⁸, Riccardo Brugnera⁶², Riccardo Bruno⁵⁵, Antonio Budano⁶⁵, Max Buesken⁴⁸, Mario Buscemi⁵⁵, Jose Busto⁴⁶, Ilya Butorov⁶⁸, Anatael Cabrera⁴³, Hao Cai³⁴, Xiao Cai¹⁰, Yanke Cai¹⁰, Zhiyan Cai¹⁰, Antonio Cammi⁶⁰, Agustin Campeny⁵, Chuanya Cao¹⁰, Guofu Cao¹⁰, Jun Cao¹⁰, Rossella Caruso⁵⁵, Cédric Cerna⁴⁴, Irakli Chakaberia²⁵ Jinfan Chang¹⁰, Yun Chang³⁹, Pingping Chen¹⁸, Po-An Chen⁴⁰, Shaomin Chen¹³, Xurong Chen²⁶, Yi-Wen Chen³⁸, Yixue Chen¹¹, Yu Chen²⁰, Zhang Chen¹⁰, Jie Cheng¹⁰, Yaping Cheng⁷, Davide Chiesa⁵⁹, Pietro Chimenti³, Artem Chukanov⁶⁸, Anna Chuvashova⁶⁸, Gérard Claverie⁴⁴, Catia Clementi⁶³, Barbara Clerbaux², Selma Conforti Di Lorenzo⁴³, Daniele Corti⁶¹, Salvatore Costa⁵⁵, Flavio Dal Corso⁶¹, Olivia Dalager⁷⁵, Christophe De La Taille⁴³, Jiawei Deng³⁴, Zhi Deng¹³, Ziyan Deng¹⁰, Wilfried Depnering⁵², Marco Diaz⁵, Xuefeng Ding⁵⁸, Yayun Ding¹⁰, Bayu Dirgantara⁷⁴, Sergey Dmitrievsky⁶⁸, Tadeas Dohnal⁴¹, Georgy Donchenko⁷⁰, Jianmeng Dong¹³, Damien Dornic⁴⁶, Evgeny Doroshkevich⁶⁹, Marcos Dracos⁴⁵, Frédéric Druillole⁴⁴, Shuxian Du³⁷, Stefano Dusini⁶¹, Martin Dvorak⁴¹, Timo Enqvist⁴², Heike Enzmann⁵², Andrea Fabbri⁶⁵, Lukas Fajt⁷¹, Donghua Fan²⁴, Lei Fan¹⁰, Can Fang²⁸, Jian Fang¹⁰, Wenxing Fang¹⁰, Marco Fargetta⁵⁵, Anna Fatkina⁶⁸, Dmitry Fedoseev⁶⁸, Vladko Fekete⁷¹, Li-Cheng Feng³⁸, Qichun Feng²¹, Richard Ford⁵⁸, Andrey Formozov⁵⁸, Amélie Fournier⁴⁴, Haonan Gan³², Feng Gao⁴⁸, Alberto Garfagnini⁶², Alexandre Göttel^{50,48}, Christoph Genster⁵⁰, Marco Giammarchi⁵⁸, Agnese Giaz⁶², Nunzio Giudice⁵⁵, Maxim Gonchar⁶⁸, Guanghua Gong¹³, Hui Gong¹³, Oleg Gorchakov⁶⁸, Yuri Gornushkin⁶⁸, Marco Grassi⁶², Christian Grewing⁵¹, Vasily Gromov⁶⁸, Minghao Gu¹⁰, Xiaofei Gu³⁷, Yu Gu¹⁹, Mengyun Guan¹⁰, Nunzio Guardone⁵⁵, Maria Gul⁶⁷, Cong Guo¹⁰, Jingyuan Guo²⁰, Wanlei Guo¹⁰, Xinheng Guo⁸, Yuhang Guo⁵⁰, Paul Hackspacher⁵², Caren Hagner⁴⁹, Ran Han⁷, Yang Han⁴³, Muhammad Hassan⁶⁷, Miao He¹⁰, Wei He¹⁰, Tobias Heinz⁵⁴, Patrick Hellmuth⁴⁴, Yuekun Heng¹⁰, Rafael Herrera⁵, Daojin Hong²⁸, Shaojing Hou¹⁰, Yee Hsiung⁴⁰, Bei-Zhen Hu⁴⁰, Hang Hu²⁰, Jianrun Hu¹⁰, Jun Hu¹⁰, Shouyang Hu⁹, Tao Hu¹⁰, Zhuojun Hu²⁰, Chunhao Huang²⁰, Guihong Huang¹⁰, Hanxiong Huang⁹, Qinhua Huang⁴⁵, Wenhao Huang²⁵, Xin Huang¹⁰, Xingtao Huang²⁵, Yongbo Huang²⁸, Jiaqi Hui³⁰, Lei Huo²¹, Wenju Huo²², Cédric Huss⁴⁴, Safeer Hussain⁶⁷, Antonio Insolia⁵⁵, Ara Ioannisian¹, Roberto Isocrate⁶¹, Kuo-Lun Jen³⁸, Xiaolu Ji¹⁰, Xingzhao Ji²⁰, Huihui Jia³³, Junji Jia³⁴, Siyu Jian⁹, Di Jiang²², Xiaoshan Jiang¹⁰, Ruyi Jin¹⁰, Xiaoping Jing¹⁰, Cécile Jollet⁴⁴, Jari Joutsenvaara⁴², Sirichok Jungthawan⁷⁴, Leonidas Kalousis⁴⁵, Philipp Kampmann^{50,48}, Li Kang¹⁸, Michael Karagounis⁵¹, Narine Kazarian¹, Amir Khan²⁰, Waseem Khan³⁵, Khanchai Khosonthongkee⁷⁴, Patrick Kinz³⁸, Denis Korablev⁶⁸, Konstantin Kouzakov⁷⁰, Alexey Krasnoperov⁶⁸, Zinovy Krumshteyn⁶⁸, Andre Kruth⁵¹, Nikolay Kutovskiy⁶⁸, Pasi Kuusiniemi⁴², Tobias Lachenmaier⁵⁴, Cecilia Landini⁵⁸, Sébastien Leblanc⁴⁴, Victor Lebrin⁴⁷, Frederic Lefevre⁴⁷, Ruiting Lei¹⁸, Rupert Leitner⁴¹, Jason Leung³⁸, Chao Li²⁵, Demin Li³⁷, Fei Li¹⁰, Fule Li¹³, Haitao Li²⁰, Huiling Li¹⁰, Jiaqi Li²⁰, Kaijie Li²⁰, Mengzhao Li¹⁰,

Min Li¹¹, Nan Li¹⁶, Nan Li¹⁰, Qingjiang Li¹⁶, Ruhui Li¹⁰, Shanfeng Li¹⁸, Shuaijie Li²⁰, Tao Li²⁰, Teng Li²⁵, Weidong Li¹⁰, Weiguo Li¹⁰, Xiaomei Li⁹, Xiaonan Li¹⁰, Xinglong Li⁹, Yi Li¹⁸, Yufeng Li¹⁰, Zhaohan Li¹⁰, Zhibing Li²⁰, Ziyuan Li²⁰, Hao Liang²², Hao Liang⁹, Jingjing Liang²⁸, Daniel Liebau⁵¹, Ayut Limphirat⁷⁴, Sukit Limpijumnong⁷⁴, Guey-Lin Lin³⁸, Shengxin Lin¹⁸, Tao Lin¹⁰, Jiajie Ling²⁰, Ivano Lippi⁶¹, Fang Liu¹¹, Haidong Liu³⁷, Hongbang Liu²⁸, Hongjuan Liu²³, Hongtao Liu²⁰, Hu Liu²⁰, Hui Liu¹⁹, Jianglai Liu^{30,31}, Jinchang Liu¹⁰, Min Liu²³, Qian Liu¹⁴, Qin Liu²², Runxuan Liu^{50,48}, Shuangyu Liu¹⁰, Shubin Liu²², Shulin Liu¹⁰, Xiaowei Liu²⁰, Xiwen Liu²⁸, Yan Liu¹⁰, Yunzhe Liu¹⁰, Alexey Lokhov⁷⁰, Paolo Lombardi⁵⁸, Claudio Lombardo⁵⁶, Kai Loo⁵², Chuan Lu³², Haoqi Lu¹⁰, Jingbin Lu¹⁵, Junguang Lu¹⁰, Shuxiang Lu³⁷, Xiaoxu Lu¹⁰, Bayarto Lubsandorzhiev⁶⁹, Sultim Lubsandorzhiev⁶⁹, Livia Ludhova^{50,48}, Fengjiao Luo¹⁰, Guang Luo²⁰, Pengwei Luo²⁰, Shu Luo³⁶, Wuming Luo¹⁰, Vladimir Lyashuk⁶⁹, Qiumei Ma¹⁰, Si Ma¹⁰, Xiaoyan Ma¹⁰, Xubo Ma¹¹, Jihane Maalmi⁴³, Yury Malyshkin⁶⁸, Fabio Mantovani⁵⁷, Francesco Manzali⁶², Xin Mao⁷, Yajun Mao¹², Stefano M. Mari⁶⁵, Filippo Marini⁶², Sadia Marium⁶⁷, Cristina Martellini⁶⁵, Gisele Martin-Chassard⁴³, Agnese Martini⁶⁴, Davit Mayilyan¹, Axel Müller⁵⁴, Ints Mednieks⁶⁶, Yue Meng³⁰, Anselmo Meregaglia⁴⁴, Emanuela Meroni⁵⁸, David Meyhöfer⁴⁹, Mauro Mezzetto⁶¹, Jonathan Miller⁶, Lino Miramonti⁵⁸, Salvatore Monforte⁵⁵, Paolo Montini⁶⁵, Michele Montuschi⁵⁷, Nikolay Morozov⁶⁸, Akram Muhammad⁶⁷, Pavithra Muralidharan⁵¹, Massimiliano Nastasi⁵⁹, Dmitry V. Naumov⁶⁸, Elena Naumova⁶⁸, Igor Nemchenok⁶⁸, Feipeng Ning¹⁰, Zhe Ning¹⁰, Hiroshi Nunokawa⁴, Lothar Oberauer⁵³, Juan Pedro Ochoa-Ricoux^{75,5}, Alexander Olshevskiy⁶⁸, Domizia Orestano⁶⁵, Fausto Ortica⁶³, Hsiao-Ru Pan⁴⁰, Alessandro Paoloni⁶⁴, Nina Parkalian⁵¹, Sergio Parmeggiano⁵⁸, Teerapat Payupol⁷², Yatian Pei¹⁰, Nicomede Pelliccia⁶³, Anguo Peng²³, Haiping Peng²², Frédéric Perrot⁴⁴, Pierre-Alexandre Petitjean², Fabrizio Petrucci⁶⁵, Luis Felipe Piñeres Rico⁴⁵, Oliver Pilarczyk⁵², Artyom Popov⁷⁰, Pascal Poussot⁴⁵, Wathan Pratumwan⁷⁴, Ezio Previtali⁵⁹, Fazhi Qi¹⁰, Ming Qi²⁷, Sen Qian¹⁰, Xiaohui Qian¹⁰, Hao Qiao¹², Zhonghua Qin¹⁰, Shoukang Qiu²³, Muhammad Rajput⁶⁷, Gioacchino Ranucci⁵⁸, Neill Raper²⁰, Alessandra Re⁵⁸, Henning Rebber⁴⁹, Abdel Rebii⁴⁴, Bin Ren¹⁸, Jie Ren⁹, Taras Rezinko⁶⁸, Barbara Ricci⁵⁷, Markus Robens⁵¹, Mathieu Roche⁴⁴, Narongkiat Rodphai⁷², Aldo Romani⁶³, Bedřich Roskovec⁷⁵, Christian Roth⁵¹, Xiangdong Ruan²⁸, Xichao Ruan⁹, Saroj Rujirawat⁷⁴, Arseniy Rybnikov⁶⁸, Andrey Sadovsky⁶⁸, Paolo Saggese⁵⁸, Giuseppe Salamanna⁶⁵, Simone Sanfilippo⁶⁵, Anut Sangka⁷³, Nuanwan Sanguansak⁷⁴, Utane Sawangwit⁷³, Julia Sawatzki⁵³, Fatma Sawy⁶², Michaela Schever^{50,48}, Jacky Schuler⁴⁵, Cédric Schwab⁴⁵, Konstantin Schweizer⁵³, Dmitry Selivanov⁶⁸, Alexandr Selyunin⁶⁸, Andrea Serafini⁵⁷, Giulio Settanta⁵⁰, Mariangela Settimo⁴⁷, Zhuang Shao³⁵, Vladislav Sharov⁶⁸, Jingyan Shi¹⁰, Vitaly Shutov⁶⁸, Andrey Sidorenkov⁶⁹, Fedor Simkovic⁷¹, Chiara Sirignano⁶², Jaruchit Siripak⁷⁴, Monica Sisti⁵⁹, Maciej Slupecki⁴², Mikhail Smirnov²⁰, Oleg Smirnov⁶⁸, Thiago Sogo-Bezerra⁴⁷, Julanan Songwadhana⁷⁴, Boonrucksar Soonthornthum⁷³, Albert Sotnikov⁶⁸, Ondrej Sramek⁴¹, Warintorn Sreethawong⁷⁴, Achim Stahl⁴⁸, Luca Stanco⁶¹, Konstantin Stankevich⁷⁰, Dus Stefanik⁷¹, Hans Steiger⁵³, Jochen Steinmann⁴⁸, Tobias Sterr⁵⁴, Matthias Raphael Stock⁵³, Virginia Strati⁵⁷, Alexander Studenikin⁷⁰, Gongxing Sun¹⁰, Shifeng Sun¹¹, Xilei Sun¹⁰, Yongjie Sun²², Yongzhao Sun¹⁰, Narumon Suwonjandee⁷², Michal Szelezniak⁴⁵, Jian Tang²⁰, Qiang Tang²⁰, Quan Tang²³, Xiao Tang¹⁰, Alexander Tietzsch⁵⁴, Igor Tkachev⁶⁹, Tomas Tmej⁴¹, Konstantin Treskov⁶⁸, Andrea Triossi⁴⁵, Giancarlo Troni⁵, Wladyslaw Trzaska⁴², Cristina Tuve⁵⁵, Nikita Ushakov⁶⁹, Stefan van Waasen⁵¹, Johannes Vanden Boom⁵¹, Guillaume Vanroyen⁴⁷, Nikolaos Vassilopoulos¹⁰, Vadim Vedin⁶⁶, Giuseppe Verde⁵⁵, Maxim Vialkov⁷⁰, Benoit Viaud⁴⁷, Cristina Volpe⁴³, Vit Vorobel⁴¹, Dmitriy Voronin⁶⁹, Lucia Votano⁶⁴, Pablo Walker⁵, Caishen Wang¹⁸, Chung-Hsiang Wang³⁹, En Wang³⁷, Guoli Wang²¹, Jian Wang²², Jun Wang²⁰, Kunyu Wang¹⁰, Lu Wang¹⁰, Meifen Wang¹⁰,

Meng Wang²⁵, Meng Wang²³, Ruiguang Wang¹⁰, Siguang Wang¹², Wei Wang²⁷, Wei Wang²⁰, Wenshuai Wang¹⁰, Xi Wang¹⁶, Xiangyue Wang²⁰, Yangfu Wang¹⁰, Yaoguang Wang³⁴, Yi Wang¹³, Yi Wang²⁴, Yifang Wang¹⁰, Yuanqing Wang¹³, Yuman Wang²⁷, Zhe Wang¹³, Zheng Wang¹⁰, Zhimin Wang¹⁰, Zongyi Wang¹³, Muhammad Waqas⁶⁷, Apimook Watcharangkool⁷³, Lianghong Wei¹⁰, Wei Wei¹⁰, Yadong Wei¹⁸, Liangjian Wen¹⁰, Christopher Wiebusch⁴⁸, Steven Chan-Fai Wong²⁰, Bjoern Wonsak⁴⁹, Diru Wu¹⁰, Fangliang Wu²⁷, Qun Wu²⁵, Wenjie Wu³⁴, Zhi Wu¹⁰, Michael Wurm⁵², Jacques Wurtz⁴⁵, Christian Wysotzki⁴⁸, Yufei Xi³², Dongmei Xia¹⁷, Yuguang Xie¹⁰, Zhangquan Xie¹⁰, Zhizhong Xing¹⁰, Benda Xu¹³, Cheng Xu²³, Donglian Xu^{31,30}, Fanrong Xu¹⁹, Hangkun Xu¹⁰, Jilei Xu¹⁰, Jing Xu⁸, Meihang Xu¹⁰, Yin Xu³³, Yu Xu^{50,48}, Baojun Yan¹⁰, Taylor Yan⁷⁴, Wenqi Yan¹⁰, Xiongbo Yan¹⁰, Yupeng Yan⁷⁴, Anbo Yang¹⁰, Changgen Yang¹⁰, Huan Yang¹⁰, Jie Yang³⁷, Lei Yang¹⁸, Xiaoyu Yang¹⁰, Yifan Yang², Yifan Yang¹⁰, Haifeng Yao¹⁰, Zafar Yasin⁶⁷, Jiaxuan Ye¹⁰, Mei Ye¹⁰, Ziping Ye³¹, Ugur Yegin⁵¹, Frédéric Yermia⁴⁷, Peihuai Yi¹⁰, Xiangwei Yin¹⁰, Zhengyun You²⁰, Boxiang Yu¹⁰, Chiye Yu¹⁸, Chunxu Yu³³, Hongzhao Yu²⁰, Miao Yu³⁴, Xianghui Yu³³, Zeyuan Yu¹⁰, Chengzhuo Yuan¹⁰, Ying Yuan¹², Zhenxiong Yuan¹³, Ziyi Yuan³⁴, Baobiao Yue²⁰, Noman Zafar⁶⁷, Andre Zambanini⁵¹, Shan Zeng¹⁰, Tingxuan Zeng¹⁰, Yuda Zeng²⁰, Liang Zhan¹⁰, Feiyang Zhang³⁰, Guoqing Zhang¹⁰, Haiqiong Zhang¹⁰, Honghao Zhang²⁰, Jiawen Zhang¹⁰, Jie Zhang¹⁰, Jingbo Zhang²¹, Jinnan Zhang¹⁰, Peng Zhang¹⁰, Qingmin Zhang³⁵, Shiqi Zhang²⁰, Shu Zhang²⁰, Tao Zhang³⁰, Xiaomei Zhang¹⁰, Xuantong Zhang¹⁰, Yan Zhang¹⁰, Yinhong Zhang¹⁰, Yiyu Zhang¹⁰, Yongpeng Zhang¹⁰, Yuanyuan Zhang³⁰, Yumei Zhang²⁰, Zhenyu Zhang³⁴, Zhijian Zhang¹⁸, Fengyi Zhao²⁶, Jie Zhao¹⁰, Rong Zhao²⁰, Shujun Zhang³⁷, Tianchi Zhao¹⁰, Dongqin Zheng¹⁹, Hua Zheng¹⁸, Minshan Zheng⁹, Yangheng Zheng¹⁴, Weirong Zhong¹⁹, Jing Zhou⁹, Li Zhou¹⁰, Nan Zhou²², Shun Zhou¹⁰, Xiang Zhou³⁴, Jiang Zhu²⁰, Kejun Zhu¹⁰, Bo Zhuang¹⁰, Honglin Zhuang¹⁰, Liang Zong¹³, and Jiaheng Zou¹⁰

¹Yerevan Physics Institute, Yerevan, Armenia ²Université Libre de Bruxelles, Brussels, Belgium ³Universidade Estadual de Londrina, Londrina, Brazil ⁴Pontificia Universidade Catolica do Rio de Janeiro, Rio, Brazil ⁵Pontificia Universidad Católica de Chile, Santiago, Chile ⁶Universidad Tecnica Federico Santa Maria, Valparaiso, Chile ⁷Beijing Institute of Spacecraft Environment Engineering, Beijing, China ⁸Beijing Normal University, Beijing, China ⁹China Institute of Atomic Energy, Beijing, China ¹⁰Institute of High Energy Physics, Beijing, China ¹¹North China Electric Power University, Beijing, China ¹²School of Physics, Peking University, Beijing, China ¹³Tsinghua University, Beijing, China ¹⁴University of Chinese Academy of Sciences, Beijing, China ¹⁵Jilin University, Changchun, China ¹⁶College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China ¹⁷Chongqing University, Chongqing, China ¹⁸Dongguan University of Technology, Dongguan, China ¹⁹Jinan University, Guangzhou, China ²⁰Sun Yat-Sen University, Guangzhou, China ²¹Harbin Institute of Technology, Harbin, China

²²University of Science and Technology of China, Hefei, China ²³The Radiochemistry and Nuclear Chemistry Group in University of South China, Hengyang, China ²⁴Wuyi University, Jiangmen, China ²⁵Shandong University, Jinan, China ²⁶Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ²⁷Nanjing University, Nanjing, China ²⁸Guangxi University, Nanning, China ²⁹East China University of Science and Technology, Shanghai, China ³⁰School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China ³¹Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China ³²Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China ³³Nankai University, Tianjin, China ³⁴Wuhan University, Wuhan, China ³⁵Xi'an Jiaotong University, Xi'an, China ³⁶Xiamen University, Xiamen, China ³⁷School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China ³⁸Institute of Physics National Chiao-Tung University, Hsinchu ³⁹National United University, Miao-Li ⁴⁰Department of Physics, National Taiwan University, Taipei ⁴¹Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic ⁴²University of Jyvaskyla, Department of Physics, Jyvaskyla, Finland ⁴³IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay, France ⁴⁴Université de Bordeaux, CNRS, CENBG-IN2P3, F-33170 Gradignan, France ⁴⁵IPHC, Université de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg, France ⁴⁶Centre de Physique des Particules de Marseille, Marseille, France ⁴⁷SUBATECH, Université de Nantes, IMT Atlantique, CNRS-IN2P3, Nantes, France ⁴⁸III. Physikalisches Institut B, RWTH Aachen University, Aachen, Germany ⁴⁹Institute of Experimental Physics, University of Hamburg, Hamburg, Germany ⁵⁰Forschungszentrum Jülich GmbH, Nuclear Physics Institute IKP-2, Jülich, Germany ⁵¹Forschungszentrum Jülich GmbH, Central Institute of Engineering, Electronics and Analytics -Electronic Systems(ZEA-2), Jülich, Germany ⁵²Institute of Physics, Johannes-Gutenberg Universität Mainz, Mainz, Germany ⁵³Technische Universität München, München, Germany ⁵⁴Eberhard Karls Universität Tübingen, Physikalisches Institut, Tübingen, Germany ⁵⁵INFN Catania and Dipartimento di Fisica e Astronomia dell Università di Catania, Catania, Italy ⁵⁶INFN Catania and Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania, Italy ⁵⁷Department of Physics and Earth Science, University of Ferrara and INFN Sezione di Ferrara, Ferrara, Italy ⁵⁸INFN Sezione di Milano and Dipartimento di Fisica dell Università di Milano, Milano, Italy ⁵⁹INFN Milano Bicocca and University of Milano Bicocca, Milano, Italy ⁶⁰INFN Milano Bicocca and Politecnico of Milano, Milano, Italy ⁶¹INFN Sezione di Padova, Padova, Italy ⁶²Dipartimento di Fisica e Astronomia dell'Universita' di Padova and INFN Sezione di Padova, Padova, Italy

⁶³INFN Sezione di Perugia and Dipartimento di Chimica, Biologia e Biotecnologie dell'Università di Perugia, Perugia, Italy
⁶⁴Laboratori Nazionali di Frascati dell'INFN, Roma, Italy
⁶⁵University of Roma Tre and INFN Sezione Roma Tre, Roma, Italy
⁶⁶Institute of Electronics and Computer Science, Riga, Latvia
⁶⁷Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
⁶⁸Joint Institute for Nuclear Research, Dubna, Russia
⁶⁹Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
⁷⁰Lomonosov Moscow State University, Moscow, Russia
⁷¹Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
⁷²Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
⁷³National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
⁷⁵Department of Physics and Astronomy, University of California, Irvine, California, USA