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Abstract:
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studies of millicharged particles in accelerator-based experiments.
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I. Introduction
The study of the millicharged particle (MCP) is linked to several fundamental mysteries in particle

physics. First, it is connected to the test of the empirical electric charge quantization2 and the related
theories3–5. It is also considered as a low-energy consequence of well-motivated dark-sector models6,
and neutrinos are also postulated to possess small charges7;8. MCP is proposed as a potential dark matter
candidate9–11, and has recently been considered as a solution to the anomaly of 21 cm absorption spectrum
reported by the EDGES collaboration12–17. We consider MCP, labeled χ, with electric chargeQχ and define
ε ≡ Qχ/e. This can arise if χ directly has a small charge under standard model U(1) hypercharge, or if χ is
coupled to a massless kinetic mixing dark photon6.

MCPs are studied in terrestrial experiments18–31, and their signatures as dark matter is also studied in
astrophysical/cosmological observations . Our focus here is to briefly describe and classify the accelerator-
based probes. The MCPs are usually produced when the beam collides with another beam or impacts a
target. They can be produced either directly, or through secondary mesons decay. The experimental signa-
ture can be roughly classified as tracking (dE/dx signature), hard scattering (to detect the electron recoil),
or missing momentum/energy. The electron-scattering signatures have been one of the main focus to study
MCPs. When studying such signatures, since there is a 1/E enhancement in the scattering cross-section (E
here is the electron-recoil energy), experiments with sensitivity to low-energy recoil or scintillation signa-
tures are often preferred as MCP probes29.

II. Existing bounds and future projections - In the following paragraphs, we roughly classify the
accelerator probes of MCPs.

Colliders - Searches for MCP at Large Hadron Collider (LHC) and Tevatron have delivered strong
constraints in the mass region above 100 MeV. These consist of bounds from trident process searches, the
invisible width of the Z boson as well as direct searches for particles with fractional charges at LEP20

and low ionizing particles at CMS32;33, with focus on ±2e/3 and ±e/3 . In addition, new sensitivity is
achieved recently by milliQan (a prototype scintillator-based detector) for masses larger than a few hundred
MeV34. The proposed electron collider, such as Beijing Electron-Positron Collider35 could also improve
the sensitivity to MCPs.

Proton fixed-target and neutrino experiments - In the fixed-target neutrino experiments category,
the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments are found to provide new
constraints in MCP mass windows, 5 − 35 MeV and 100 − 180 MeV respectively36. Using existing data
in Fermilab’s MuMI beam, ArgoNeuT, a small liquid Argon neutrino detector, has further constrained new
regions of the MCP parameter space by searching for two hit aligned with the distant target37;38. Sensitivity
projections for MCPs over a range of masses 5 MeV to 5 GeV has been analyzed recently36, considering
the upcoming neutrino experiments, such as MicroBooNE, the Short-Baseline Neutrino (SBN) Program,
the Deep Underground Neutrino Experiment (DUNE) at Fermilab36. The sensitivity of the proposed proton
fixed-target experiment at CERN, Search for Hidden Particles (SHiP), is also discussed in this paper36.

Lepton fixed-target experiments - In the low-mass region, the most sensitive constraints on MCPs
were placed by electron fixed-target experiments, e.g. SLAC mQ experiment19 with the leading sensitivity
formMCP < 100 MeV. Despite the mass reach limit due to the beam energy, further sensitivity enhancement
to MCP coupling can be reached by future lepton beam-dump facilities using missing energy and momen-
tum techniques, e.g. LDMX39 and NA6440 with 1016 electron-on-target and 5 × 1013 muon-on-target,
respectively.

MilliQan/FerMINI: dedicated detectors - Dedicated MCP detectors were proposed at the LHC, pro-
ton fixed-target, and neutrino experiments, e.g. milliQan26 and FerMINI30. The detectors consist of 3-4
layers of scintillator arrays, where MCPs traversing the scintillators produce a few photo-electrons in each
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Figure 1: (a) Exclusions from previous accelerator searches include SLAC19, Colliders20;25, CMS32;33,
MiniBooNE and LSND29, ArgoNeuT at Fermilab38, recent search by milliQan at LHC34, the diffuse super-
nova neutrino background search in Super-K41 are shown. The projections for milliQan HL-LHC25 (dashed
blue) and FerMINI30 at DUNE (similar sensitivity at NuMI) (dashed red) and SUBMET42 (dashed purple)
are also shown by dashed curves for comparison (see the text for further details).
(b) The projected sensitivities including NA64µ40 (5× 1013 muon-on-target) and LDMX39 (1016 electron-
on-target) are shown by dashed curves in comparison to the existing bounds excluded by different sources
(shaded in gray). The reaches of neutrino experiments such as MicroBooNE, SBND, SHIP is taken from .
A DUNE analysis was first conducted in36, but we show the sensitivity reach based on a more involved and
detailed study37, taking into account realistic background assumptions and using the double-hit technique
discussed in the text.

layer. The idea is to use multiple-coincidence scintillation as an experimental signature within a short time
window, to suppress backgrounds mainly from dark currents in the PMTs and coincidence with radioac-
tive decays in the cavern. The milliQan detector is proposed to be placed in the transverse region with
respect to the LHC beamline. Recently, a new sensitivity has been achieved by the first results of milliQan
demonstrator (placed in the same traverse location) for masses larger than 700 MeV and reaching up to
almost 5 GeV34. The milliQan demonstrator has been invaluable to demonstrate that this type of segmented
scintillator detectors can be operated well in LHC experimental conditions.

FerMINI30 is a proposal to place a milliQan-like detector downstream of a proton fixed-target facility,
either at the existing Neutrinos at the Main Injector43 (NuMI) beamline or the upcoming Long-Baseline
Neutrino Facility44 (LBNF) beamlines. The FerMINI proposal consists of a milliQan-type detector. It
could provide sensitivity to ε below 10−3 and up to about mχ ∼ 5 GeV, taking advantage of the higher
flux of MCP produced in the collision of the high-luminosity proton beams on a fixed target at the neutrino
facilities. The SUBMET detector is proposed at the J-PARC proton fixed-target facility, having a similar
sensitivity as FerMINI for masses below 1 GeV42. Another example of a dedicated detector based on the
same principle: MAPP45 is planned to be part of the MoEDAL experiment upgrade program, foreseen to
operate during RUN-3 at the LHC, and will also search for fractionally charged particles46. Recently, a new
setup has been proposed, to place a milliQan-like detector at the LHC forward region to study MCP47;48.

Cosmic-ray accelerator - Another interesting probe of the milli-charged particles is through the pro-
duction of MCPs from cosmic ray hitting the atmosphere. Using large underground neutrino detectors such
as Super-K, a recent study has set new limits on MCPs for the mass range 0.1 GeV to 1.5 GeV41 (dedicated
analyses based on future experiments, e.g., DUNE, could potentially improve sensitivity).
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