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Abstract
We examine the scientific opportunities offered by a dedicated “J/ψ factory” comprising an e+e− collider equipped

with a polarized e− beam and a monochromator that reduces the center-of-mass energy spread of the colliding beams.
Such a facility, which would have budget implications that are similar to those of the Fermilab muon program, would
produce O(1013) J/ψ events per Snowmass year and support tests of discrete symmetries in hyperon decays and in-
vestigations of QCD confinement with unprecedented precision. While the main emphasis of this study is on searches
for new sources of CP -violation in hyperon decays with sensitivities that reach the Standard Model expectations,
such a facility would additionally provide unique opportunities for sensitive studies of the spectroscopy and decay
properties of glueball and QCD-hybrid mesons. Polarized e− beam operation with Ecm just above the 2mτ threshold
would support a search for CP violation in τ− → π−π0ν decays with unique sensitivity. Operation at the ψ′ peak
would enable unique probes of the Dark Sector via invisible decays of the J/ψ and other light mesons.
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Introduction
In contrast to K-meson and B-meson systems, where CP violations have been extensively investigated,
CP violations in hyperon decays have never been observed. A consequence of CP symmetry in Λ decay
is that α− = −α+, where α− (α+) is the up-down asymmetry parameter for Λ→ pπ− (Λ̄→ p̄π+) decay.
Any deviation of the CP asymmetry parameter ACP ≡ (α− + α+)/(α− − α+) from zero would be an
unambiguous signal for CP violation. Conservative estimates of standard model (SM) induced CPV in
Λ decay via the Kobayashi-Maskawa mechanism are in the |ACP | ' (1 ∼ 5) × 10−5 range [1, 2]. A
measurement of |ACP | that is above this range would be a sign of new, beyond-the-SM (BSM) physics.

Agreement between SM calculated and measured values of ε′/ε [3] restricts the possible level of non-
SM CP violations for parity-changing decay processes of s-quarks to be below the 6× 10−5 level [4], but
allows for asymmetries as large asO(10−3) in parity-conserving processes that can be observed in hyperon
decays, such as Λ→ pπ− and Ξ− → Λπ− [5].

The best current experimental upper limit for the Λ hyperon’s ACP parameter1 is |ACP | < 2.4× 10−2

(90% CL) from a BESIII analyisis of 420K fully reconstructed J/ψ → Λ(→ pπ−)Λ̄(→ p̄π+) events with
negligible background [7] in a 1.3 B J/ψ event sample. This result superceded an earlier result |ACP | <
4.0×10−2 that was based on 96K pp̄→ ΛΛ̄ events [8]. Recently BESIII increased their J/ψ data sample to
10 B events. Analyses that are currently underway that using this expanded data set plus Λ (& Λ̄) hyperons
produced from Ξ→ Λπ decays are expected to improve the sensitivity to the ∼ 2× 10−3 level [9].

However, this anticipated more stringent limit from BESIII will barely touch the upper end of the new
physics possibilities discussed in ref. [5], and is two orders-of-magnitude above the level expected for SM
sources of CPV. Thus, a search for a new-physics source of CPV in hyperon decays has considerable
reach, and this motivates the exploration of techniques that significantly improve on the BESIII sensitivity.

The path to δACP < 10−4

The statistical sensitivity for hyperon CP asymmetry parameter measurements goes as
[
PYrms

√
Nevts

]−1,
where PYrms is the rms polarization of the hyperon. To improve on the BESIII ACP sensitivity of 2× 10−3

that is expected for the full 10 B J/ψ event data sample, to the < 10−4 level requires at least a twentyfold
increase in PΛ

rms

√
Nevts. We propose to achieve this by increasing PΛ

rms with a polarized e− beam and
increasing Nevts by a combination of a luminosity increase and a reduction in the c.m. energy spread
of the colliding beams. (Here we limit discussion to ΛΛ̄ measurements; similar results obtain for ΞΞ̄ & ΣΣ̄.)

e− beam polarization: BESIII Λ measurements, which are done with unpolarized e− and e+ beams, were
only possible because of the cos θ-dependent polarization of the Λ and Λ̄ produced by a non-zero complex
phase difference, ∆Φ, between the A 1

2
1
2

and A 1
2
− 1

2
helicity amplitudes for the J/ψ → ΛΛ̄ process [10].

BESIII measured this to be ∆Φ = (42.4± 0.8)◦ [7] and the corresponding rms polarization is PΛ
rms ' 0.15

(solid black curve in Fig. 1a). If the e− beam has an 80% longitudinal polarization, the Λ hyperon’s rms
polarization will increase approximately four-fold to PΛ

rms ' 0.6 (dotted blue curve in Fig. 1a), which
is equivalent to a factor of 16 gain in Nevts. Another huge advantage of a polarized e− beam is that
throughout the measurement period the polarization can be reversed or set to zero, with no changes to the
beam conditions, thereby providing a powerful tool for understanding and controling systematics. Thus, the
e− beam polarization is an essential feature of our evaluation.
Higher Luminosity: BEPCII is the highest luminosity e+e− collider to operate in the τ -charm threshold
energy region and typically produces 1 B events/month at the J/ψ peak. However, the BEPCII design is
optimized for Ecm = 3.77 GeV, where the instantaneous luminosity is 1033cm−2s−1; at Ecm = mJ/ψc

2 =
3.097 GeV the luminosity is a factor of 2.5 ∼ 3 lower. An e+e− collider based on BEPCII technology
but optimized for the J/ψ would have at least double BESIII’s J/ψ event rate. SuperKEKB is developing

1 HyperCP limited the combination of CP parameters in the Ξ→ Λπ, Λ→ pπ chain to |AΛ
CP +AΞ−

CP | < 2× 10−3 [6].
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FIG. 1: a) The production angle dependence of the absolute value of the Λ polarization forP(e−) = 0 (solid black), P(e−) = 0.8
(dotted blue) and P(e−) = 1.0 (dashed red). b) The J/ψ line shape for different values of δErms.

nanobeam techniques with the goal of producing a factor of 40 luminosity boost over KEKB [11]. Aspects
of the SuperKEKB design that are applicable to the J/ψ factory would be incorporated into the J/ψ-factory
design with a resultant additional gain in luminosity.
Monochromator scheme: When BEPCII operates at the J/ψ, the c.m. energy spread of the colliding
electron and positron beams is δErms ' 1.1 MeV, and considerably broader than the Γ = 92 keV J/ψ
natural width. The visible peak cross section for e+e− → J/ψ at BESIII is σJ/ψ = 3.4µb, a small
fraction of its theoretical peak value of ' 90µb (for δErms = 0). A monochromator scheme proposed
by Zolents [12] introduces momentum dispersion into both beams at the e+e− interaction point that is
arranged so the low-momentum side of the e− beam profile intercepts the high energy side of the e+ beam
profile, and vice versa. This can substantially reduce the effective δErms and correspondingly increase the
J/ψ production rate; for δErms = 57 keV, the cross section is 10×higher: σJ/ψ = 41µb (see Fig. 1b).

Other physics with > 1013 polarized J/ψ mesons
Although this letter emphasizes the CPV search capabilities of a polarized J/ψ factory, a host of other
research programs could be supported by such a facility, most of which would be done simultaneously with
the CPV measurements. These include:
i) precision studies of hyperon semileptonic and other rare decays and searches for forbidden decays;
ii) comprehensive studies of QCD in the confinement regime, including the spectra and decay properties
of glueballs and QCD-hybrid mesons that are produced in radiative J/ψ decays [13–15];
iii) precise measurements of rare and sensitive searches for forbidden (including C and CP -violating) of
the J/ψ and light hadrons such as η, η′, ω, and φ [16, 17].

Physics opportunities at nearby c.m. energies
Operation at the ψ(3686) (ψ′) peak would provide a large, unbiased sample of ππ-tagged J/ψ mesons
produced via ψ′ → π+π−J/ψ for studies of J/ψ decays to invisible and dark photon final states [18];
similar searches could be done for light mesons using the ψ′ → ππJ/ψ; J/ψ → γξ; ξ → invisible
(ξ = π0, η, η′, φ, etc.) decay sequences. In addition there would be a multi-million event sample of polar-
ized Ω−Ω̄+ pairs [19] for CPV and rare (forbidden) decay measurements (searches), as well as copious
transitions to, and decays of, all of the below-open-charm-threshold charmonium levels [20].

Polarized e− beam operation at a c.m. energy just above the τ+τ− threshold (Ecm ≈3.554 GeV) would
allow for a sensitive search for CPV in τ− → ρ−(→ π−π0)ν decays [21]. Large data samples at this
energy would support measurements of the B(τ− → K−ν)/B(τ− → π−ν) ratio with sufficient accuracy
to extract a Cabibbo-angle (θC) value with precision similar to that determined from K-meson decays [22].
A comparison ofK-meson and τ -lepton measurements of θC would provide a sensitive probe for new BSM
physics in the light-quark sector [23].
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