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Abstract:
Mechanical oscillators, ranging in mass from picograms to kilograms, have now been realized in a regime

where the quantum fluctuations of their position are observable. This development represents a more than 4
orders of magnitude improvement in the displacement sensitivity of any object over the past decade. Further
extension of this capability, to significantly smaller masses, or to better precision at intermediate masses, pos-
sibly in conjunction with quantum metrology techniques, holds promise for a host of small-scale tests of the
gravity-quantum interface, a de facto BSM scenario. Here we collect some ideas being experimentally pursued
within the field of cavity optomechanics with the aim of fostering links between the high-energy physics and
precision quantum measurement communities.
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Figure 1: State of the art in displacement sensitivity of me-
chanical oscillators. At present, it is possible to resolve the quan-
tum fluctuations (zero-point motion) of a solid state nanomechan-
ical oscillator with an imprecision & 40 dB below that at the
standard quantum limit.

Mechanical oscillators have been central to the
study of gravity in the classical regime: low frequency
torsion pendula have been used for precise measure-
ments of the Newtonian gravitational constant [1], tests
of the equivalence principle [2], and of the inverse
square law of Newtonian gravity [3]. All such exper-
iments have been limited by spontaneous thermal dis-
placement fluctuations of the oscillator. Over the past
decade, mesoscopic mechanical oscillators have been
the subject of displacement measurements that are able
to resolve the oscillator’s zero-point (“vacuum”) fluctu-
ations (see Figure 1). This has been driven by the inte-
gration of ideas and tools from disparate fields such as
gravitational-wave detection, quantum optics, nanome-
chanics, quantum metrology, and atomic physics [4–
6]. In doing so, state of the art experiments [7–9] have
resolved the zero-point motion of nanomechanical os-
cillators with an imprecision that is more than 40 dB
below that at the standard quantum limit (SQL); more
than 6 orders of magnitude better (where comparable,
in units of zero-point motion) than torsion pendulum
experiments. It is now ripe to deploy quantum measure-
ments of mechanical oscillators to investigate questions
at the interface of gravity and quantum mechanics, a de
facto BSM scenario.

Precision mechanical experiments to test several BSM scenarios have been proposed, and are in various
stages of experimental development:

• Precision tests of Newtonian gravity: The smallest source mass with which Newtonian gravity has been
tested is of the order of ∼ 100 g [10]; cavity-enhanced displacement measurements may allow source
masses to be significantly smaller (∼ 10−3 g). This capability can check systematic uncertainties in the
measurement of the gravitational constant — the most imprecisely known fundamental constant [11] —
that arise from density and shape inhomogeneities in large source masses [10]. Experimental advance
to realize a milligram scale mass optomechanical system with the required displacement sensitivity has
been rapid [12].

• Gravitational entanglement and decoherence: Experiments with mesoscopic objects that source grav-
ity have the potential to test whether gravity is quantum [13, 14]. As Feynman argued [15], by preparing
mesoscopic source masses in a quantum superposition, either their gravitational fields must also exist
in a quantum superposition (see also [16]), certifying that gravity is quantum, or, if not, quantum me-
chanics must be modified at macroscopic scales. If indeed gravity is quantum, it can also be the agent
of decoherence that prevents large masses from being prepared in quantum superpositions [17–22]. Ex-
periments with larger masses, that are levitated so as to be free of extraneous decoherence mechanisms,
have demonstrated that they can be measured in a quantum-noise-limited fashion [23, 24]. A distant
goal of this research is to perform interference experiments on quantum superpositions of large masses
to test gravity’s relation with quantum mechanics [25–28]. The scale of these effects roughly scale as,
(M/MP )2, where M is the mass of the mechanical oscillator, and MP ≈ 22µg is the Planck mass. In
this sense, neutron interference experiments in earth’s gravity have been verified to be consistent with the
predictions of quantum theory [29, 30].
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• Tests of Planck-mass-scale physics: Various quantum gravity scenarios, accommodating a minimal
length scale, call for modifications of the quantum mechanical canonical commutation relations [31, 32].
Applied to a mechanical oscillator, these take the form of a mass-dependent deformation of the uncer-
tainty principle, ∆x∆p ≥ (~/2)[1 +β(∆p/MP c)

2], that scales with the ratio (M/MP )2. Pulsed optical
measurements to perform high-precision quantum state tomography can access this deformation [33];
however, the prevalence and precision of continuous measurements have already begun to set stringent
limits on these kinds of modifications [34, 35].

• Quantum vacuum in non-inertial frames: Just as non-inertial motion in classical physics leads to
apparent forces, quantum mechanics in non-inertial frames call for apparent quantum fluctuations of the
vacuum [36, 37]. When the non-inertial motion is gravitational free-fall, the effect is that of Hawking
radiation [38], whereas in a uniformly accelerated frame, this leads to the Unruh effect [39]. Analog
simulations of both effects have been experimentally investigated [40, 41], however, a direct measurement
of either remains elusive. The depolarization of electron bunches in storage rings is consistent with the
Unruh effect [42, 43]. Table-top single-particle experiments will provide a controlled systemic-free arena
to study the Unruh effect, and through it, quantum field theory in a non-inertial frame. By the equivalence
principle, this may provide hints about quantum fields on curved backgrounds.

The effects described above issue from fundamental questions about gravity, or the gravity-quantum in-
terface. Thought experiments and theoretical proposals to test this crucial seam in physics which have been
proposed over the past half a century now stand within experimental grasp, largely owing to the advent of
quantum-noise-limited measurements of mesoscopic mechanical oscillators. (Quite analogous to mechanical
searches for dark matter [44].) Deeper interaction between the high-energy physics community and the quan-
tum metrology/quantum optics community will hasten progress, and identify new conceptual links that remain
undiscovered.
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