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Atoms and molecules gently encased in the “artifical vacuum” of an inert cryogenic crystal
matrix are extremely promising as quantum sensors for fundamental physics tests, such as
searches for EDMs and time-varying, dark-matter-related EDMs. They are also a promising
technology for single molecule NMR and MRI. The key remaining challenge is producing
single-crystal samples with high dopant densities.

The Standard Model (SM) of particle physics is the most precisely tested theory of physical
reality [1]. For example, its prediction for the electron magnetic moment (including the Dirac pre-
diction, quantum electrodynamics, hadronic and weak contributions) agrees to 1 part per billion
with exceptionally precise measurements [2], though an intriguing 2.4 standard deviation discrep-
ancy is now prompting new measurements and theoretical investigations. Despite its successes,
there is a preponderance of evidence that the SM is incomplete. It fails to account for several
basic phenomena of the universe: Why is there more matter than anti-matter in the universe?
What is Dark Matter, which is five times more abundant than the ordinary matter described by
the SM? What is Dark Energy? How can gravity be incorporated into our understanding of the
other fundamental forces in the SM? The traditional approach towards answering these questions
has been to increase the collision energy achievable at particle colliders, allowing new particles
and phenomena to be produced and studied. While this approach has been enormously successful
during the development and confirmation of the SM, colliders have thus far failed to find any of
the new physics Beyond the Standard Model (BSM) described above. As the cost of continuing to
increase the energy frontier at colliders grows, searches at the precision frontier of particle physics
provide an alternative approach [3–5]. At the precision frontier, sensitive laboratory-scale experi-
ments may be able to provide insight into these questions by detecting tiny deviations arising from
higher energy scales (or weaker couplings) than can currently be reached by collider experiments.

Atom-like systems in the solid state, such as NV centers in diamond or phosphor donors in
silicon, have shown great capabilities as quantum sensors [6]. These “artifical atoms” have demon-
strated high sensitivity as ensemble sensors, leveraging the advantage of the large number of atoms
trapped within the solid [6]. They also have demonstrated high sensitivity as single-atom sensors
for nanoscale NMR and MRI, due to advantages from the angstrom-scale localization provided
by the solid-phase host [6]. Unfortunately, the atoms used in these systems to date have poor
sensitivity to physics beyond the standard model.

Fortunately, certain carefully-chosen gas-phase atoms and molecules are known to offer great
sensitivity to physics beyond the standard model [3, 7]. Trapping such atoms and molecules within
the “artifical vacuum” of an inert cryogenic crystal matrix is extremely promising for developing
quantum sensors for fundamental physics tests. Since Pryor and Wilczek [8], many have pro-
posed confining dopant atoms and molecules within the benign environment of inert, cm-sized [9],
cryogenic crystals [10–16]. The benefits of trapping in a cryogenic matrix are clear: the interac-
tion times, densities, and number of dopants are all orders of magnitude larger than what can be
achieved with gas-phase techniques. However, these advantages can only be realized if the trapped
atoms retain their essential properties for quantum sensing: efficient optical control and readout of
spin states, and spin superposition states with long coherence times [6]. Work with alkali atoms in
solid hydrogen and solid helium have demonstrated all these properties [17–22]. While solid helium
has not demonstrated high dopant densities, solid parahydrogen has. Moreover, electron spin co-
herence times approaching T2 = 0.1 s have been demonstrated for rubidium atoms in parahydrogen
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[19]; this is a longer spin coherence time than that of ACME-II, the experiment that produced the
best limit on the electron EDM [7].

While these preliminary results are extremely promising, the ensemble dephasing time T ∗
2 —

crucial for ensemble-based fundamental physics measurements — has been limited by the polycrys-
talline nature of the samples grown to date [17, 18]. The inhomogeneous nature of the host limits
the spin T ∗

2 to a value many orders of magnitude lower than the single-spin coherence time T2,
and prevents efficient optical addressing of all the trapped atoms, reducing the effective number of
the implanted species. Thus, the key remaining experimental challenge is to create single-crystal
doped cryocrystals with a well-defined crystal axis, as has been done for NV centers in diamond.
This would enable the full potential of the system to be realized.

This goal should be achievable: single-crystal cryocrystals with a well defined crystal axis have
previously been created [23–25]. But the methods used to grow single-crystal samples are incompat-
ible with the methods currently employed to produce samples with high dopant densities [26, 27].
We propose the creation of a facility optimized for the development of new techniques to produce
single-crystal cryocrystal samples with high dopant densities. We will perform an exhaustive and
systematic study of the growth and diagnosis of doped cyrocrystals of helium, hydrogen, neon, and
argon. We will use optical techniques as well as the electron spin T ∗

2 of a simple atomic dopant
[18] as diagnostics.

The eventual creation of doped single crystals will unlock their full potential for the creation
of quantum sensors for exploring physics beyond the standard model. The number of dopants
that can be distributed throughout a cryocrystal with a magnetic inhomogeneity low enough to
allow a 1 ms spin coherence time is large enough that the 350 hour data set that produced the best
electron EDM value (ACME-II [7]) could in principle be accumulated in seconds. Greatly improved
sensitivity for measuring EDMs and time-varying EDMs (e.g. due to dark matter), should result,
along with improvements in “conventional” quantum sensing, such as single-molecule NMR and
MRI [19].
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