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Abstract: In the lead up to the 2020 European Strategy Update, immense community
efforts were undertaken to elucidate the discovery potential of neutrino mass models at
energy-frontier experiments throughout the world. This includes the Large Hadron Col-
lider (LHC), its high luminosity upgrade and proposed successors, as well as beam dump
and deeply inelastic scattering facilities. In the time since, however, the development of
novel search techniques and the multiplicity of investigations have continued, as has the
analysis of collected LHC data at

√
s = 13 TeV. As a part of the Snowmass 2021 ef-

forts, we provide an updated outlook for the sensitivity to neutrino mass models at collider
experiments. We focus particularly on state-of-the-art production rates for competing pro-
duction mechanisms, new detection techniques, newly available Monte Carlo tools, and the
cumulative impact on sensitivity at current and proposed experiments.
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1 Introduction and Scope

Uncovering the origin of neutrinos’ tiny, degenerate masses and their large mixing angles
are among the major, open challenges in high energy physics today [1, 2]. To reconcile
phenomena such as neutrino oscillations with the Standard Model (SM) paradigm, it is
necessary [3] to extend the SM by new particles and new interactions. Models that achieve
such feats, known collectively as Seesaw models, do so by hypothesizing a variety of particles
at qualitatively new mass scales. These range from postulating gauge-singlet fermions [4–
10], to extended fermion [11] and scalar [10, 12–15] sectors with exotic SM gauge quantum
numbers, to new force carries [16–20]. If such states are accessible at laboratory-based
experiments, then their production and decay, which have been and continue to be exten-
sively explored [21–23], give rise to rich phenomenology, including the violation of lepton
number and/or charged lepton flavor number symmetries.

As a part of the Snowmass 2021 exercises, we aim to provide an updated outlook for
the sensitivity to benchmark neutrino mass models at collider experiments, focusing partic-
ularly on developments and progress since the 2020 European Strategy Update [1, 2]. The
scope of this work is directed specifically at state-of-the-art predictions for production rates
of Seesaw particles [24–26], new detection strategies [27–29], newly available Monte Carlo
tools [26, 28, 30, 31], and the cumulative impact on sensitivity at current and proposed
experiments [23, 25].

A sample of this is summarized in Fig. 1. There state-of-the-art cross section pre-
dictions at various accuracies in perturbation theory for producing Seesaw particles at
pp collider of various energies and mechanisms are shown for the (a) Phenomenological
Type I Seesaw, (b) Left-Right Symmetric Model, (c) Type II Seesaw, and (d) Type I+III
Seesaw. Due to an interplay between scatting matrix elements, which can become rela-
tively enhanced or suppressed at increasing mass scales, and parton density functions a
nontrivial dependence on collider energy and mass scale can be seen in scattering rates.
This is particularly relevant for gluon-initiated states, which can arise at leading order or
next-to-leading order in QCD, and which can contribute sizably to inclusive cross sections.
For example: for heavy neutrinos in Fig. 1(a), one sees a dominance of gluon fusion and
electroweak boson fusion as leading production mechanisms for multi-TeV masses.

By performing this update we hope to provide the community a standard resource
for predicted rates, anticipated sensitivity, and simulation tools of standard-bearer Seesaw
models at current and future colliders. In doing so, we hope to help guide discussions to
achieving the goal of uncovering the origin of neutrinos’ masses and mixing angles.
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Figure 1. State-of-the-art cross section predictions at various accuracies for producing Seesaw
particles at pp collider of various energies and mechanisms are shown for the (a) Phenomenological
Type I Seesaw, (b) Left-Right Symmetric Model, (c) Type II Seesaw, and (d) Type I+III Seesaw.
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