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Searches for lepton flavor violation are extremely sensitive to physics beyond the Standard Model.
Several experiments are going to probe uncharted parameter space in the near future; notably, the
Mu2e experiment is aiming to improve sensitivity to µ− → e− conversion in nuclei by several
orders of magnitude over existing limits. Mu2e-II marks a potential upgrade of Mu2e with another
order-of-magnitude increase in sensitivity. This remarkable reach will make Mu2e(-II) an important
experiment to probe new physics, not only via µ− → e− conversion, but potentially also via µ− → e+

conversion or µ− → e−X decays involving a light new boson X. Theory challenges of this project
include comparing the sensitivity of different experiments to a given model, evaluating possible
stopping targets to maximize complementarity, and understanding the unavoidable muon-decay-in-
orbit background at this unprecedented precision.
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Introduction. Lepton flavor violation (LFV) has
been identified long ago as an excellent probe of physics
beyond the Standard Model (SM) [1]. Several experi-
ments will soon increase the sensitivity in many chan-
nels by orders of magnitude. In the muon sector, the
most promising LFV signatures are µ → eγ (probed
by the MEG II experiment [2]), µ → eeē (Mu3e [3]),
and µ-to-e conversion in nuclei (DeeMe [4], COMET [5],
and Mu2e [6]). Mu2e in particular aims to reach a
µ− + 27

13Al → e− + 27
13Al single-event sensitivity of 3 ×

10−17, roughly four orders of magnitude beyond existing
bounds [6, 7]. The potential upgrade Mu2e-II at FNAL
aims to improve Mu2e’s sensitivity by yet another order
of magnitude [8, 9].

Theoretical motivations. Theoretical motivation
for LFV is plentiful [10]; most notably, the observation of
neutrino oscillations already proved that lepton flavor is
not conserved! The absence of LFV in the SM is acciden-
tal because of the minimal particle content. Extending
the SM by new particles then often leads to LFV unless
new symmetries are imposed [11]. Such extensions are
well motivated as explanations for neutrino masses or the
hierarchy problem and might even be linked to hints for
new physics in the muon’s magnetic moment [12, 13] or in
leptonic B-meson decays [14, 15]. Correspondingly, the
non-observation of LFV at upcoming experiments would
put strong constraints on many models, including super-
symmetric extensions, and provide critical information
about our fundamental understanding of nature [10].

Mu2e(-II)’s reach makes it indirectly sensitive to very
heavy new particles. In an effective-field-theory approach
heavy particles match onto non-renormalizable operators
that are suppressed by powers of a scale Λ that is related
to the large masses. For example, a single dimension-six
LFV operator ēγαPLµ d̄γαd/Λ

2 would induce a µ-to-e
conversion rate in aluminium of order [16]

Γ(µ−Al→ e−Al)

Γ(µ capture)
' 3× 10−18

(
1.5× 107 GeV

Λ

)4

,

which means that Mu2e-II is sensitive to new particles as
heavy as 104 TeV, far out of reach of any currently pro-
posed collider! Mu2e-II will of course also be sensitive
to many other operators and models and provide infor-
mation complementary to the results of Mu3e and MEG
II [16, 17]. In the event of an observation of LFV in any
of these experiments the others will help to pin down the
underlying new physics responsible for it.

Stopping target. Mu2e(-II) will use 27
13Al as a stop-

ping target, but can also study conversions in a different
material in case a signal is observed. This requires ded-
icated studies to analyze not only the ideal experimen-
tal properties a target should have (such as the effective
muon lifetime and capture rate) but also to maximize
complementarity with the aluminium target. Using dif-
ferent target materials opens the possibility to probe the
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FIG. 1: Z dependence of µ → e conversion rates for some
example scenarios taken from Refs. [18, 20].

(A,Z) and nuclear-spin dependence of the µ-to-e conver-
sion rate and thus distinguish underlying models.

Calculations of the Z-dependence of different operators
have been performed, e.g. in Refs. [18, 19]. Dedicated
studies on how to distinguish new physics operators with
different targets can be found in Refs. [17, 20], concluding
that it is best to study one light (e.g. Al) and one heavy
nucleus (e.g. Pb or Au), as shown in Fig. 1. In Mu2e(-
II) such heavy nuclei are difficult because the muon life-
time goes down drastically (from 864 ns in Al to 75 ns in
Pb [21]) and thus worsens the pion background. Using
two light nuclei still allows to distinguish operators but
requires better precision [20]. Ref. [17] points out that
Lithium 7

3Li as a second target still has good discrimina-
tory power despite being light, making it a worthwhile
target candidate to study in better detail.

Most studies focus on coherent spin-independent (SI)
µ → e conversion, featuring a welcome ∼ A2 enhance-
ment in the rate. However, there exist µeqq operators
that lead to spin-dependent (SD) conversion [22, 23]. In-
cluding higher-order corrections these operator will al-
ways also induce SI µ→ e conversion that can then often
dominate due to the A2 enhancement. Still, it is in prin-
ciple possible that SD dominates over SI, a possibility
that can be studied using target nuclei of different spin.
Aluminium carries spin J = 5/2 and is thus sensitive to
both SI and SD processes. In case of a positive signal on
Al one would then need to measure µ→ e on a light nu-
cleus with different spin in order to distinguish SD from
SI [23]; heavy nuclei are unlikely to be sensitive to SD
because the higher-order—but A2-enhanced—SI effects
should dominate. Titanium is a good choice here because
it is light and comes in isotopes of different spin. 48

22Ti
has spin 0 and a natural abundance of 74%; SI operators
would induce roughly the same rate as in Al, whereas
SD would lead to a vanishing rate. In the latter case,
one could enrich the target with 47

22Ti or 49
22Ti, both of
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which carry spin. In the former case, one should go for a
heavy target nucleus in order to distinguish different SI
operators.

Decay-in-orbit calculation. µ → e conversion in
nuclei produces approximately monoenergetic electrons
with Econv = mµ −Ebinding −Erecoil, where Ebinding and
Erecoil are small energy corrections due to the muon’s
binding energy and nuclear recoil, respectively. While
this is seemingly far away from the typical electron en-
ergies of the competing µ → eνν decay in orbit (DIO),
nuclear-recoil effects ensure that this SM decay distri-
bution has a tail up to Econv, providing an irreducible
background in Mu2e(-II). Precise calculations are neces-
sary in order to predict and understand this background
DIO spectrum near the endpoint in order to choose the
optimal signal window. Such calculations exist [24–28],
most importantly for aluminium, but might be lacking
sufficient precision for other target nuclei. Higher-order
effects should also be consistently incorporated into the
theoretical predictions for the µ→ e conversion signal.

Extending the physics case. Although the main
target of Mu2e-II will undoubtedly be the measurement
of µ− → e− conversion in nuclei, it is important to assess
the capability of the experiment to address different pro-
cesses, given the large number of stopped muons (∼ 1019)
that it will observe.

µ− → e+ conversion. In addition to µ− → e− con-
version, Mu2e(-II) is also sensitive to the lepton-number -
violating process µ− → e+ [29]. These processes are me-
diated by even higher dimensional operators and there-
fore much more suppressed, to the point where it seems
difficult to find models with testable rates [30–33]. There
seem to be no dedicated studies evaluating the best tar-
get material for µ− → e+ conversion.

µ → eX. Every decay channel of a muon in orbit
comes with a distribution tail of electron energies up
to Econv. This allows Mu2e(-II) to probe non-standard
muon decay channels, as long as they are not too sup-
pressed, for example the decay µ→ eX with a light new
boson X that would escape the detector unseen. The
current bounds on this decay are rather weak, still al-
lowing for BR(µ → eX) ' 5 × 10−5 for an ultralight X
with left-handed couplings [34, 35]. These bounds can be
improved by Mu3e [36] or MEG II [34], but even Mu2e(-
II) could have some sensitivity due to the large number
of collected muons. µ → eX plus nuclear recoil leads
to an electron spectrum with tail up to Econv and a dif-
ferent shape ((Ee − Econv)3 compared to the standard
(Ee − Econv)5) [37–39]. For mX > 0 the endpoint is dif-
ferent, too (Fig. 2). If Mu2e(-II) can measure the DIO
spectrum precisely enough it may be sensitive to the un-
usual shape coming from the µ→ eX decay.

μ→eX, BR(μ→eX)=5⨯10-5, mX =0

μ→eX, BR(μ→eX)=5⨯10-5, mX =0.3 MeV

μ→eνν
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FIG. 2: The tail of dΓ(µ → eνν)/dEe (black, dashed) near
the endpoint [27]. Following Ref. [37] we also show the tail of
dΓ(µ→ eX)/dEe corresponding to BR(µ→ eX) = 5× 10−5

(just below the current limit [34, 35]) for two values of mX .

Summary. Mu2e and Mu2e-II will provide remark-
able sensitivity to lepton flavor violation via µ-to-e con-
version in nuclei. It is of utmost importance to match
these experimental efforts on the theory side by provid-
ing precision calculations, guidance and motivation for
the choice of target, and by exploring other new-physics
scenarios that can be probed in these experiments.
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