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Field theories on a quantum computer
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Abstract:
Quantum simulation of quantum field theories is likely to provide access to quantities that are not efficiently calculable
by classical simulations. These include real time dynamics and simulation of field theories plagued by sign problems
when they are formulated in Euclidean time. The nonperturbative definition of field theories in more than two dimen-
sions usually proceeds by regularizing the theory on a spatial lattice, and tuning the parameters to a quantum critical
point. To numerically simulate such a system on a finite quantum computer, the Hilbert space at each lattice site or link
needs to be further truncated to a finite dimensional subspace. Because of universality, however, the truncation of the
dimensionality of the Hilbert space at each site becomes irrelevant as one approaches the critical point, but different
truncations might differ in their efficiency and their ability to be simulated on near-term quantum devices. Since the
first quantum computers large enough to test algorithms for simulating field theories are likely to make their appear-
ance in the next five to ten years, studying the implementation of algorithms to create, evolve, and measure interesting
field theory states—and charting out the questions where quantum computation provides an advantage—should be
studied now.

Motivation and Physics Goals
Efficiently simulating quantum field theories is a main challenge of high energy physics. When perturbation theory

fails, the only first-principles method that is implementable on a classical computer beyond two spacetime dimensions
involves taking the continuum limit of a discretized path integral evaluated by importance sampling. Often, however,
the relevant measure is not positive when the paths are expressed in any known set of classical variables, and the
integral becomes exponentially hard to compute since the sum over an exponentially large number of paths becomes
necessary. Hence, novel computational paradigms are highly desirable.

Quantum computers can, in principle, overcome the challenges that we currently face on a classical computer,
since one quantum system can efficiently simulate a different quantum system using similar resources. However, one
has to face three challenges before quantum computers can become useful for high energy physics. The first challenge
is related to the fundamental question of whether traditional field theories with bosonic degrees of freedom, including
gauge fields, which are formulated with an infinite dimensional local Hilbert space, can be formulated with a finite
number of qubits so as to be able to tractable on a quantum computer. The second challenge is to design quantum al-
gorithms to probe interesting physical properties of such “qubit” field theories which can be implemented on quantum
devices. In particular, one will need algorithms for expectation values of physical observables and correlations in ther-
mal equilibrium as well as time-dependent properties of QFTs such as creating, evolving, and measuring interesting
states in the theory. While quantities that are out of thermal equilibrium may also be accessible, it may be possible to
design novel hybrid algorithms that improve over currently used classical algorithms for equilibrium observables. The
third challenge comes from the fact that forthcoming quantum computers will have only limited coherence and will be
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unable to implement quantum circuits of arbitrary depth. Thus, it is crucial to formulate the field theory in a language
amenable to a small, noisy quantum device.

Qubit Regularizations and Quantum Critical Points
Local quantum field theories of interest in high energy physics are naturally defined using an infinite-dimensional

Hilbert space. The infinities come from two sources. The first source is the infinite number of spatial points even
within the small continuum region. A natural way to regularize this ultra-violet (UV) infinity, proposed by Wilson
almost 50 years ago, is to consider the low-energy sector of a finite-dimensional quantum system defined on a spatial
lattice. QFTs emerge in such low energy sectors of lattice quantum systems only near the vicinity of quantum critical
points, whose existence then becomes an important criteria to define QFTs non-perturbatively. The second source
of infinity is the need for an infinite local Hilbert space even on the finite lattice, as is implied from the well known
canonical commutation relation

[φ(x), π(y)] = iδx,y

where x and y are spatial discrete lattice sites. There are no finite dimensional realizations of this commutation relation.
Yet, free quantum field theories and the physics of asymptotic freedom rely heavily on this relation. Any truncation
of the local Hilbert space necessary for implementing a quantum field theory on a quantum computer will necessarily
destroy the relation, making fine tuning a necessary step before free quantum field theories can emerge, especially in
the UV.

The first problem then is the one of finding an appropriate quantum theory on a lattice with both a finite dimen-
sional local Hilbert space and a quantum critical point in the desired universality class. We define this as a qubit
regularization. Once this is accomplished, one needs a way of creating the states of interest in this theory: e.g., states
whose long distance properties at the quantum critical point match those of few particle ‘in’ states or of thermal states
in the field theory. These then need to undergo quantum evolution using a quantum algorithm with short circuit depth
to be implementable on near-term quantum devices. Finally, the quantities of interest have to be efficiently measured,
e.g., by calculating expectation values or by projecting onto few particle ‘out’ states.

Figure 1: Schematic of how qubit regularization fits into
the usual picture of Wilson’s renormalization group ideas.
The two lines shown as Qubit Regularization 1 and Qubit
Regularization 2 show a set of qubit Hamiltonians where
one parameter is varied. These are distinct from RG flow
lines, which are shown with arrows.

Recent work has shown that it is likely that the O(3)
sigma model appears as the long-distance description of
a lattice Hamiltonian constructed with two qubits per
lattice site when tuned to the critical point of the the-
ory5. This formulation can also be extended to O(N)
sigma models for arbitrary N , with a small local Hilbert
space4. New quantum critical points in gauge theories
have also been shown to exist in highly truncated theo-
ries3. While an approach based on qudit-registers, as in
traditional proposals for simulating field theories, can be
efficiently encoded using two-qubit interactions2, we ad-
vocate for this simpler approach where the microscopic
lattice Hamiltonian is directly realized as a local interac-
tion between the logical degrees of freedom of a quan-
tum device. We anticipate that such an approach, which
frames universality as an issue of central importance,
will not only aid in the development of near-term ex-
perimental applications, but may lead to a reduction in
resource requirements. The ground state, or vacuum,
of this two-qubit theory can be efficiently prepared with
a low depth quantum circuit1. General algorithms also
exist for preparing single and two particle states in free
field theories. Some work has also been carried out in ef-
ficient preparation of thermal states in field theories. The
next few years will see rapidly developing techniques for carrying out such calculations, both on quantum devices, and
with hybrid quantum-classical algorithms.
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