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1 Introduction

While quantum computers hold great potential for many applications in HEP, the Noisy Intermediate-
Scale Quantum (NISQ) [Pre18] computers of the near-term future come with a series of practical
challenges. In particular, the quantum gates that are used in these computers are noisy and
the readout is also noisy. Both sources of noise must be mitigated in order to for the output of
NISQ devices to be useful for HEP. Therefore, the HEP quantum computing community should
allocate resources to study, improve, and integrate these methods.

2 Readout Errors

Readout errors occur when a quantum state is readout to be different than the actual state. These
errors arise from two sources: (1) measurement times are not short compared with decoherence
times and thus a qubit in the |1〉 state can decay to the |0〉 state during a measurement, and
(2) probability distributions of measured physical quantities that correspond to the |0〉 and |1〉
states have overlapping support and there is a small probability of measuring the opposite value.

Generally, readout errors are familiar to HEP experimentalists because our detectors intro-
duce non-trivial resolution effects. In particular, unfolding a binned differential cross section with
N bins is completely analogous to performing readout error corrections on a quantum computer
with log2(N) qubits. This connection was made explicit in Ref. [UNdJB19] (see also Fig. 1) and
already applied in Ref. [BNPDJ19, UNdJ19], where traditional high energy physics unfolding
strategies were applied to readout error corrections on quantum computers. In the future, a de-
tailed comparison of unfolding methods applied to typical distributions in quantum computing
may further improve the performance. It may also be that future methods developed specifically
for quantum computers could be useful for HEP.

One of the biggest challenges with readout error corrections is that they always involve con-
structing a 2n×2n response matrix, where n is the number of qubits. A variety of approximations
have been proposed to construct this matrix with sub-exponential resources, but it is still an
active area of research.
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Now that we have defined the circuit block Bi for one
step, we can construct the circuit for the full evolution for
N steps. This is shown schematically in Fig. 4. The last
operation on the ancillary qubit, labeled with a |0i, cor-
responds to measuring the ancillary qubit and proceeding
to the next step only if we measure |0i. If we measure in-
stead the ancillary qubit to be in the |1i state, the circuit
evolution is interrupted and we start all over again. As
we will see in an explicit example later, accepting only
the states where the ancillary qubit is in the |0i state
selects the correct interferences between physical states,
where all the amplitudes are positive. The state with
the ancillary qubit in the state |1i would give the lin-
ear superposition of the amplitudes with a negative sign,
unlike Eq. (1). Now that the ancillary qubit has been
measured, it can be reused for the next step, which ex-
plains the previous assertion that only a single ancillary
qubit is necessary.
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FIG. 4. The full quantum circuit written in terms of the single
steps Bi. The last operation on the ancillary qubit, labeled
with a |0i, corresponds to measuring the ancillary qubit and
proceeding to the next step only if we measure |0i.

In general the probability of the spin to flip and the
probabilities of the path to go left or right depend on the
evolution variable, meaning the matrices UF , UA,# and
UA," are di↵erent at each step. At the end of the circuit
evolution, we measure the physical state | N,N i (we have
already measured the ancillary qubit) and we record the
output. This way we sampled the distribution of physical
final states and generated one event. This corresponds,
in our tree notation, to reaching a final tree leaf with
definite spin.

B. Circuit Evolution

We explicitly compute the circuit evolution for two
steps. For simplicity, we start the spin qubit in the |0i
state, such that the initial state is

| 0,2i = |0i |0i |00i . (9)

After B1 is applied the state is evolved to

1p
2

[ cos(✓F ) cos(✓#) (|0i + |1i) |0i |00i

+ cos(✓F ) sin(✓#) (|0i + |1i) |0i |10i (10)

+ sin(✓F ) (|0i � |1i) |1i |00i] .

The negative sign in the last line of the above equations
shows that |ai = |1i encodes the di↵erence instead of the
sum of amplitudes. Performing the conditional measure-
ment on the ancillary qubit we find

| 1,2i =
1p
2

[cos(✓F ) cos(✓#) |0i |0i |00i (11)

+ cos(✓F ) sin(✓#) |0i |0i |10i
+ sin(✓F ) |0i |1i |00i] .

Applying the second circuit block (B2 plus the condi-
tional measurement) we obtain

| 2,2i =
1

2

h �
cos2(✓#) cos2(✓F ) + sin2(✓F )

�
|0i |0i |00i

+ . . .
i
, (12)

where the amplitudes for the remaining leaves do not
have multiple terms as is the case with the displayed leaf
amplitude. Physically, this corresponds to the fact that
there are two ways to reach the leaf |0i |00i: always going
right and either never swapping trees or swapping twice.
If we go to a higher number of steps or if we start the
fermion in a superposition of the |0i and |1i states, the
number of interferences grows very quickly. To compute
the probability of measuring an eigenstate we square the
appropriate amplitude and we multiply it by a factor of
2N (which equals 4 in this case). The latter is necessary
because the factor of 1

(
p

2)N
in front of the final state is

not physical, but is the result of applying N Hadamard
gates and selecting to keep only the states we want with
the conditional measurement we apply to the ancillary
qubit at each step.

C. Quantum Complexity

We now want to show that the above quantum circuit
can generate one event in polynomial time, meaning the
number of standard quantum gates employed grows poly-
nomially with the number of steps. Each step in the cir-
cuit consist of a constant number of gates. To determine
the complexity of the quantum circuit we have to find
how many times, on average, we must run a circuit block
to generate one event. If we are simulating N steps we
must run N circuit blocks and after each block we must
measure the ancillary qubit to be in the |0i state. For a
sequence of N measurements on one qubit there are 2N

possible outcomes, meaning we would have to run ⇠ 2N

circuit block on average to obtain one event. However,
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Particles produced in high energy collisions that are charged under one of the fundamental forces
will radiate proportionally to their charge, such as photon radiation from electrons in quantum
electrodynamics. Realistic simulations of such collisions in collider- or cosmic-based high energy
physics require an accurate model of this final state radiation pattern. When the charge is large,
the radiation pattern is a complex, many-body quantum system. Classical Markov Chain Monte
Carlo approaches work well to capture many of the salient features of the shower of radiation, but
cannot capture all quantum e↵ects. This is particularly true when additionally the gauge group is
non-Abelian, as is the case for quantum chromodynamics. We show how quantum algorithms are
well-suited for describing the quantum properties of final state radiation. In particular, we develop
a polynomial time quantum final state shower procedure. The algorithm is explicitly demonstrated
for a simplified quantum field theory on a quantum computer. With future advances in quantum
computing hardware, our algorithm will be able to improve precision calculations for many high
energy physics measurements.
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While quantum computers hold great promise for
e�ciently solving classical problems such as querying
databases [? ] or factoring integers into primes [? ],
their most natural application is to describe inherently
quantum physical systems [? ]. The most direct connec-
tion between quantum systems and quantum computers
occurs for analog circuits that try to mimic the evolution
of a Hamiltonian as closely as possible [? ]. However,
some physical systems are too complex or have too many
degrees of freedom to model with a quantum circuit in
the near future. For example, this is true for a generic
quantum field theory, where there are both continuous
quantum numbers as well as an infinite number of de-
grees of freedom. While tools have been developed to
model quantum field theories by discretizing spacetime [?
] and even including continuous quantum numbers [? ],
the number of quantum bits (or their continuous analog)
required to compute any relevant scattering amplitude is
impractically large.

A promising alternative to analog circuits are digital
quantum circuits, which use quantum algorithms to de-
scribe inherently quantum physical systems without di-
rectly implementing the system’s Hamiltonian. Such a
scheme has already been applied to a simple quantum
field theory on the lattice [? ]. The dynamics of high
energy scattering processes, however, are too complex
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for lattice methods, as are methods based on traditional
perturbative theory if the number of final state particles
becomes too large. A successful approach to simulating
these dynamics is known as the parton shower [? ], which
relies on reorganizing the perturbative expansion to ex-
pand around the collinear and soft limit of emissions.
This leads to di↵erent series expansions where each term
includes infinitely many terms in the original ↵s series ex-
pansion, and is the basis of parton shower Monte Carlo
(MC) programs [? ? ? ? ], which are the main compo-
nent of high energy quark and gluon scattering simula-
tion.

Parton shower programs are implemented using classi-
cal MC Markov Chain (MCMC) algorithms to e�ciently
generate high multiplicity radiation patterns. This re-
liance on classical MCMC algorithms implies that several
quantum interference e↵ects need to be neglected. For
showers describing emissions in the strong interaction,
this means that showers can only be implemented in the
limit of large number of colors (NC = 3 ! 1). While an
impressive research e↵ort to include subleading color ef-
fects exists [? ? ? ], there is a fundamental limitation in
the ability of MCMC methods to e�ciently capture this
physics. For showers describing the electroweak interac-
tions [? ], interference e↵ects can arise because physically
distinct particles can have related interactions, such that
amplitudes which di↵er in their intermediate particles
can interfere with one another. An important examples
is the interference of amplitudes involving intermediate
Z bosons and photons.

Our primary motivation is to develop a quantum cir-
cuit for describing the quantum properties of parton
showers. In this work, we consider interference e↵ects
in showers that have interference from di↵erent interme-
diate particles, using a simplified model that captures
these e↵ects without having to introduce the full com-
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Figure 1: A schematic diagram illustrating the connection between readout errors and unfolding.
Figure from Ref. [UNdJB19].
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3 Gate Errors

Gate errors do not have a direct analog in experimental HEP, but are nonetheless very important
for near term quantum computing. A variety of methods have been proposed and vary in their
dependence on the particular circuit, the knowledge of the noise profile, and the types of noise
affecting the circuit. Furthermore, existing methods can be very resource intensive (in terms of
required gates and/or quantum computer runs).

One common method for gate error mitigation is to increase the noise of a circuit in a
controlled way and then extrapolate to zero error (‘zero noise extrapolation’). An observable
can be measured for multiple value of the error inflation and then a parametric function can
be used for the extrapolation. This method is effective at removing the important depolarizing
noise, but can require significant resources to amplify noise. Recently, Ref. [AHB20] proposed
an approach that trades gate depth for quantum computer runs by introducing randomness into
the noise amplification. New methods like this could be empowering for near term projects using
quantum computers. Alternatives to zero noise extrapolation have also been proposed and this
is an active area of research. For example, there have been multiple proposals to learn the noise
profile of a circuit by considering a similar circuit that can be efficiently simulated (e.g. one made
of only Clifford gates) [CACC20,SQC+20]. Variations on this idea, as well as combinations with
traditional zero noise extrapolation may provide the best approach to noise mitigation for NISQ
devices and near-term HEP applications.
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