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Since its precise predictions of the short distance physics in its early times, quantum
field theory (QFT) has a successful track record and achieves its peak by establishing the
standard model of particle physics. These successes have been achieved with numerous ideas
from gauge theories to renormalization group (RG), which provided a theoretical framework
for asymptotic freedom and quark confinement to coexist in a consistent way. At the time
of these developments, lattice gauge theory was proposed as a practical way to do reliable
QCD calculations. The lattice is a UV regulator and one needs to take the continuum limit
(arbitrarily small bare coupling). This can be accomplished with importance sampling and
Monte Carlo methods. Despite the success of these methods for calculating static properties
of hadrons (e.g., form factors), they are problematic for theories with slowly running coupling
constants which require very large lattices. RG methods have the potential capability to
access smaller lattice spacings in larger physical volumes, which is important for understanding
any effective QFT in general. Additionally, importance sampling falls short when one aims
to study the dynamical properties, for example, the ab-initio description of fragmentation
processes in hadron collisions. Replacing jet algorithms such as Pythia or Herwig by lattice
calculations is a long term objective that would have a significant impact on collider data
analysis. Applying a QCD Hamiltonian on a Hilbert space for quarks and gluons greatly
exceeds what can be accomplished with high performance computers. New approaches are
direly needed to overcome these obstacles.

QFTs have also been essential for quantum gravity (QG). Since the proposal of AdS/CFT
correspondence by Maldacena, certain QFTs are believed to be dual to quantized gravity the-
ories in one (or more) higher dimensions. Despite the tremendous progress, new perspectives
are needed for a more systematic and detailed understanding. Indeed, recent studies suggest
that these duality maps are tightly connected to concepts in quantum information, such as
quantum error correction and quantum complexity. However, these recent connections are
only the beginning of a long story, and there is a long path to make these precise and useful
for a better understanding of how QG may work. For this, it is crucial to have a detailed
understanding of the static and dynamical properties of QFTs, as these are one side of the
duality (in fact, most of the time this is the part that we understand best).

All in all, the main problem is simulating QFTs (this encapsulates spin systems and even
zero dimensional QFTs, i.e., quantum mechanics). Quantum information tools under develop-
ment since the 90s provide partial answers, and promising future for a full understanding to
crack this problem. In this LOI, we give a guide to help realize these goals with classical and
quantum methods utilizing tensor networks (TNs). Tensor networks go back to K. Wilson’s
famous numerical RG solution to Kondo problem, which was a single impurity problem. In the
1990s, S. White noticed that these methods fell short due to neglecting the entanglement be-
tween coarse-grained blocks, and invented the density matrix renormalization group (DMRG).
DMRG computes ground states of lattice Hamiltonians in one spatial dimension and is based
on the matrix product state (MPS) TN. In the early 2000s, G. Vidal explained how to use
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MPS to simulate dynamics of quantum systems under the constraint of low entanglement,
while the MPS was generalized to projected entangled pair states (PEPS) for higher dimen-
sional systems. G. Vidal also introduced a new type of TN called multi-scale entanglement
renormalization ansatz (MERA) by introducing a renormalization scheme based on keeping
track of local entanglement. Since then, TNs have gradually become one of the most effective
numerical tools as ansatz states, and a conceptual tool to understand problems, even in areas
outside of condensed matter physics, thanks to its foundations being built upon entanglement.

One major application of TNs for HEP is lattice gauge theory. An important step is dis-
cretizing and truncating the local quantum fields. Field truncations have been studied in the
past years however much has to be done to reach the optimal values, potentially considering
physical properties such as being in the low energy. Operating with optimal values is impor-
tant because the complexity of TN algorithms grows sharply with the dimension of the local
Hilbert spaces. In fact, classical TN methods have already been used to reformulate models
studied by lattice gauge theorists. For compact matter fields and gauge groups this reformu-
lation is automatically discrete and suitable to set up quantum computations or simulations.
Symmetries and universality classes determine tensor selection rules which are preserved by
truncations, and noise-robust implementation of Gauss’ law are possible in any dimensions.
Recent progress has been made regarding efficient implementations of the method in 2+1
and 3+1 dimensions (ATRG). A Lagrangian theory on a Euclidean space-time lattice can
be smoothly transformed into a Hamiltonian theory with tensor deformations, which enables
a good starting point for initiating quantum simulations, e.g, a real-time evolution calcula-
tion. Another way of simulating QFTs is using continuous tensor networks, which has been
introduced by Verstraete and Cirac, for this particular reason. In fact, all these develop-
ments suggest a bigger goal to be pursued: a hybrid classical/quantum simulation method,
in which initial states are prepared by variational TN algorithms, and time-evolution and
measurements are performed by a combination of TN and quantum computing methods. The
reward of this program is high, and it possesses theoretical challenges, such as how to contract
tensor networks efficiently, how to compile them into a (noisy) quantum computer, how to
perform efficient and reliable quantum state tomography utilizing TNs. Symmetry properties,
low-energy features and finding effective Hamiltonians obeying these will not only improve
the TN methods but also help for a more efficient quantum simulation. Furthermore, TNs
can directly benefit lattice QFT calculations by assisting Monte Carlo simulations. Overall,
we envision a roadmap of simulating QFTs with/without gauge invariance and seeking new
approaches for physical problems such as confinement, etc., by starting from 1+1D models
towards 3+1D, e.g., Schwinger model → 2+1D QCD → 3+1D QCD → QCD with additional
matter content.

The other major application of TNs is in quantum gravity. A breakthrough has come in
2012 by B. Swingle, a connection has been established between AdS and MERA. Since then,
this area has expanded including quantum error correction, cMERA, and quantum chaos.
In all these, TNs have been used either directly or indirectly as an analytical/conceptual
or numerical tool. The challenges for developing these early works include the same chal-
lenges as before, new ideas for tensor contractions and compilations are needed and using
known/expected physical properties of QG is necessary. Furthermore, it is crucial to develop
a systematic understanding of low/mid-energy excitations and thermal states with tensor net-
works, especially for MERA and cMERA. This is going to help with the long-standing problem
of understanding the dynamics in AdS/MERA correspondence, which would lead to a general
bulk-boundary map in the language of TNs. Furthermore, generalizing the correspondence to
a full QG/QFT may require an out-of-box research on connections between tensor networks,
quantum error correction and quantum simulation. A good starting point there is matrix
models (0+1D matrix QFT, i.e., quantum mechanics with matrix degrees of freedom), e.g., a
special instance of these models is shown to be dual to 11-dimensional M-theory, suggesting
a more general correspondence to quantum gravity theories in spacetimes beyond AdS.
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