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This Letter of Interest for the Snowmass 2021 Theory Frontier briefly reviews recent progress
in perturbative calculations, up to the five-loop level, of anomalous dimensions of operators in a
conformal field theory defined at an infrared fixed point in an asymptotically free gauge theory. Some
examples of agreement between perturbative calculations and lattice gauge theory measurements
and bootstrap results are given.

In a quantum field theory, the actual scaling dimension
DO of a generic operatorO differs from its free-field value
DO,free due to interactions: DO = DO,free − γ

O
, where

γ
O
is the anomalous dimension of O. Let us consider an

asymptotically free vectorial non-Abelian gauge theory
in four spacetime dimensions with gauge group G and
Nf massless Dirac fermions transforming according to
a representation R of G. The dependence of the gauge
coupling g = g(µ) on the Euclidean momentum scale
µ where it is measured is given by the beta function,
β = dα/d lnµ, where α = g2/(4π). This has the series
expansion

β = −2α

∞∑

ℓ=1

bℓ a
ℓ , (1)

where a = α/(4π). The asymptotic freedom condi-
tion implies Nf < Nu, where Nu = 11CA/(4Tf) [1];
CA is the quadratic Casimir invariant of the group and
Tf = T (R) is the trace invariant of the fermion repre-
sentation. There is an interval in Nf below Nu in which
the theory flows from a weak-coupling limit in the deep
ultraviolet (UV) to an infrared fixed point (IRFP) of
the renormalization group (RG) at a nonzero value αIR,
where the beta function vanishes [2, 3], so that this lim-
iting theory is scale invariant and is inferred to be con-
formally invariant. This interval is often called the con-
formal window or interval, where the IR theory is in a
(deconfined) non-Abelian Coulomb phase with no spon-
taneous chiral symmetry breaking.
The values of the anomalous dimensions of (gauge-

invariant) operators in the conformal field theory (CFT)
at this IRFP are of fundamental interest. These include
γψ̄ψ,IR, where the subscript indicates evaluation at the
IRFP, and also β′

IR = (dβ/dα)IR, which is (minus) the
anomalous dimension of F aµνF

aµν , where F aµν is the field
strength tensor for the theory. Given the series expansion

γψ̄ψ =

∞∑

ℓ=1

cℓ a
ℓ , (2)

one can calculate an n-loop (nℓ) perturbative value of
γψ̄ψ, denoted γψ̄ψ,nℓ, by first computing the value of the

IR zero, denoted αIR,nℓ, of the n-loop beta function, and
then substituting it in the n-loop expansion for γψ̄ψ. This
was done to the four-loop level in [4, 5], to the five-loop
level for SU(3) in [6], using b5 from [7] and c5 from [8],
and to the five-loop level for general G and R in [9], using
b5 from [10]. The bℓ with ℓ ≥ 3 and cℓ with ℓ ≥ 2 are
scheme-dependent; Refs. [7, 8, 10] used the MS scheme
[11]. The slope β′

IR was calculated to the four-loop level
in [12, 13] and to five-loop level in [9]. In addition to re-
sults for general gauge group G and fermion representa-
tion R, explicit formulas were presented for G = SU(Nc)
andR equal to the fundamental, adjoint, and rank-2 sym-
metric and antisymmetric tensor representations. These
perturbative calculations are most accurate at the up-
per end of the conformal interval as a function of Nf ,
since αIR → 0 as Nf approaches Nu from below. As
Nf decreases, αIR grows, and higher-loop terms become
more important. Studies of scheme dependence were per-
formed in [14].
It has been valuable to compare these perturbative cal-

culations with lattice measurements of anomalous dimen-
sions. For G = SU(3) and fermions in the fundamental
(fund.) representation, the theory with Nf = 12 is con-
sidered by most lattice groups to be in the conformal
interval [15–23] (see also [24, 25]). Our perturbative re-
sults for γψ̄ψ,IR,nℓ, calculated in the manner above, at
n-loop levels n = 3 through n = 5, are (see Table I in
[6]):

γψ̄ψ,IR,3ℓ = 0.312, γψ̄ψ,IR,4ℓ = 0.253,

γψ̄ψ,IR,5ℓ = 0.255 . (3)

Lattice measurements of γψ̄ψ,IR for this theory include
γψ̄ψ,IR = 0.414(16) [16], γψ̄ψ,IR ≃ 0.35 [17], γψ̄ψ,IR =
0.27(3) [19], γψ̄ψ,IR ≃ 0.25 [20], and γψ̄ψ,IR = 0.235(46)
[22]. Bootstrap methods provide another powerful ap-
proach to determine operator dimensions in CFTs [26,
27]. An application of these methods to this theory sug-
gests a value γψ̄ψ,IR ≃ 0.24 [28]. Our four-loop and five-
loop values from [6] are in good agreement with the lat-
tice values from [19, 20, 22] and with the bootstrap value
from [28]. For this theory, our value β′

IR,4ℓ = 0.282 (see
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Table IV in [12]), is in agreement with the lattice result
β′

IR = 0.26(2) [21].
Since αIR → 0 as Nf → Nu, one can reexpress

anomalous dimensions at this type of IRFP as series
in powers of the manifestly scheme-independent variable
∆f = Nu −Nf :

γψ̄ψ,IR =

∞∑

n=1

κn(∆f )
n . (4)

The calculation of κn requires, as input, the bℓ with
1 ≤ ℓ ≤ n + 1 and the cℓ with 1 ≤ ℓ ≤ n. This al-
ternative method of calculating these anomalous dimen-
sions has been carried out in [9, 13, 29–34]. To the max-
imal order to which γψ̄ψ,IR has been calculated, namely

O(∆4
f ), the coefficients in this ∆f series expansion are

all positive. The results yield somewhat larger values for
γψ̄ψ,IR than the expansions in αIR,nℓ; for example, for
the above-mentioned SU(3) theory with R = fund. and
Nf = 12, γIR,ψ̄ψ,IR,∆3

f
= 0.323 and γIR,ψ̄ψ,IR,∆4

f
= 0.338

at O(∆3
f ) and O(∆4

f ), respectively (see Table I in [30]).

Padé resummation methods yield similar values; the [1,2]
and [0,3] Padé approximants to the O(∆4

f ) series yield
γψ̄ψ,IR,[1,2] = 0.3375 and γψ̄ψ,IR,[0,3] = 0.352, respec-

tively (see Table II of Ref. [32]). Future work should fur-
ther elucidate the predictions of these perturbative cal-
culations of anomalous dimensions via series expansions
in αIR,nℓ and in ∆f .
Other results include calculations of anomalous dimen-

sions of baryon operators [33], of higher-spin fermion bi-
linear operators [34], and of operators in theories with
fermions in two different representations [35]. After an
initial study using series expansions in powers of αIR,nℓ
to calculate anomalous dimensions of operators in an
N = 1 supersymmetric gauge theory [36], these calcu-
lations were carried out using series expansions in pow-
ers of ∆f in [37]. Importantly, the expansion coefficients
calculated in [37] agree precisely, at each order, with the
series expansion of the exactly known results for anoma-
lous dimensions of operators in this theory [38, 39].

Although bilinear fermion operators are not, in
general, gauge-invariant in chiral gauge theories, the
F aµνF

aµν operator is, and high-order perturbative calcu-
lations of β′

IR have also been carried out for the conformal
interval of asymptotically free chiral gauge theories [40].

For the (non-supersymmetric) vectorial gauge theory,
as Nf decreases toward the lower end of the conformal
interval, αIR increases, and as Nf decreases below a criti-
cal value denoted as Nf,cr, the IR behavior of the theory
changes, with the onset of spontaneous chiral symme-
try breaking and resultant dynamical mass generation,
so that the IR theory is no longer a CFT. If Nf is only
slightly less than Nf,cr, the theory may exhibit quasi-
dilatation-invariant RG behavior with a slowly running
gauge coupling. Such theories have been of interest for
possible applications to models of physics beyond the
Standard Model and have been extensively studied by
lattice simulations. These have shown the appearance
of a light scalar boson, consistent with being a dilaton-
like state resulting from the spontaneous breaking of the
approximate dilatation invariance [41–44]. Although our
perturbative methods become less accurate as one ap-
proaches the lower end of the confirmal interval and αIR
gets larger, they can give a rough indication of where this
strong-coupling behavior occurs and the corresponding
value of Nf,cr. Our calculations suggest [30], for exam-
ple, that for G = SU(3) and R = fund, Nf,cr ∼ 8− 9, in
agreement with the lattice results in [23, 41–43].

We believe that this area is one where substantial
progress has been made, both in higher-loop continuum
perturbative calculations of anomalous dimensions of op-
erators in conformal field theories and in fully nonpertur-
bative lattice simulations. There have also been interest-
ing connections with bootstrap CFT methods, and it is
expected that more progress can be made in the near
future. An example of a workshop where results from
perturbative, lattice, and bootstrap CFT were discussed
was [45]. Further interactions among these research com-
munities should be fruitful.
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