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Some of the most essential and impactful work currently being done in amplitudes
concerns the types of special functions that appear in scattering amplitudes beyond
multiple polylogarithms. While multiple polylogarithms have long been known to ap-
pear in scattering amplitudes for small numbers of particles and at low loop orders
(see for instance [1–3])—and indeed are sufficient for expressing one-loop amplitudes
in any theory (in integer dimensions)—elliptic generalizations of polylogarithms are
known to appear in QCD already at two loops [4]. In fact, it has recently been shown
that integrals over even more complicated manifolds also appear in this (and other)
theories, first at two loops where an integral over a K3 surface appears, and also at
higher loops where integrals over Calabi-Yau manifolds with dimension proportional
to the loop order contribute [5, 6]. While elliptic polylogarithms and the amplitudes
containing them have received a great deal of attention in recent years [7–30], much
remains to be understood about the algebraic and analytic properties of these types
of functions. Amplitudes involving integrals over higher-dimensional manifolds remain
even less well studied.

The potential benefits of better understanding these types of beyond-polylogarithmic
functions is made clear by the ‘polylog revolution’ that has occurred in amplitudes over
the last decade, as a result of our ever-increasing understanding of the geometric and an-
alytic structure of multiple polylogarithms [31–41]. In particular, our ability to compute
polylogarithmic amplitudes (via differential equations, direct integration, and bootstrap
techniques) has taken huge leaps, for instance enabling us to compute the four-gluon
amplitude in N = 4 supersymmetric Yang-Mills theory through three loops [42], six-
particle amplitudes in the planar limit of this theory through seven loops [43], and
certain infinite classes of integrals to all loop orders [44]. Many of these techniques can
also be applied in QCD calculations, where promising progress has already been made
(see for instance [45, 46]). This understanding of polylogarithms has also uncovered
surprising combinatorial and number-theoretic structures embedded within scattering
amplitudes [47–49], which connect the analytic structure of these amplitudes to cluster
algebras, tropical geometry, and motivic Galois theory.
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A similar revolution is needed in our understanding of the types of functions that
appear in amplitudes beyond polylogarithms, both for making computational progress
and because this promises to uncover yet deeper structures within quantum field theory.
In particular, a better understanding of how to find and exploit identities between these
types of functions is called for, as are efficient techniques for their numerical evaluation.
While encouraging progress has been made on both of these fronts in the case of elliptic
polylogarithms (see for instance [9,18,22,26,30]), the technology for dealing with elliptic
polylogarithms remains far less developed than our technology for dealing with their
non-elliptic counterparts.

Meanwhile, basic preparatory work is still needed to help delineate the types of
integrals that appear in scattering amplitudes beyond elliptic polylogarithms. While the
manifolds that have hitherto been identified in integrals contributing to generic gauge
theories and scalar theories fall into a special subclass of Calabi-Yau manifolds [50,51],
more refined analyses along the lines of [52] or using Picard-Fuchs-type differential
equations (as in [50]) will help us better characterize these functions and their analytic
properties.

Advances in these areas are required not just for understanding supersymmetric
gauge theory and the formal structure of amplitudes, but also for making more precise
predictions in the Standard Model. As such, these topics deserve to be a focal point of
research over the next decade and more.
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[20] J. Brödel, C. Duhr, F. Dulat and L. Tancredi, Elliptic Polylogarithms and Iterated Integrals on
Elliptic Curves II: an Application to the Sunrise Integral, Phys. Rev. D97 (2018) 116009
[1712.07095].

[21] L. Adams and S. Weinzierl, The ε-form of the Differential Equations for Feynman Integrals in
the Elliptic Case, Phys. Lett. B781 (2018) 270 [1802.05020].
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