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We highlight a continuing program of research into the structure of scattering amplitudes in N = 4
super-Yang-Mills theory, for its intrinsic understanding and for its relevance for collider physics.

The study of quantum scattering amplitudes has
played a central role in the development of theoretical
physics. Feynman diagrams represent the perturbative
expansion of an amplitude as a sum over all ways the col-
lisions between particles could take place in space-time.
Feynman diagrams are where the rubber meets the road
for quantum field theory: they underlie comparisons of
theoretical predictions and experimental measurements
at all high energy colliders, including the Large Hadron
Collider (LHC), where quantum chromodynamics (QCD)
plays the dominant role. Yet we now know, in part due to
investigations of N = 4 super-Yang-Mills theory (N=4
SYM), that there are completely different ways of visu-
alizing scattering amplitudes, where pictures of particle
trajectories, and indeed the notion of space-time itself,
make no direct appearance.
Beyond the very simplest processes, direct Feynman

diagram calculations can be incredibly complicated. Yet
amazingly, the final results, obtained by summing pages
of algebra, often collapse to single-term expressions! The
more we have learned to calculate scattering amplitudes,
especially in N=4 SYM, the more we have uncovered
seemingly miraculous patterns, simplicity and symme-
tries, reflecting beautiful new mathematical structures,
which are at the center of modern mathematics research,
including combinatorics, positive Grassmannians, cluster
algebras, number theory, and the theory of motives.
In the planar limit of a large number of colors, scat-

tering in N=4 SYM is a laboratory for addressing ana-
lytically the dynamical properties of quantum field the-
ory in Minkowski spacetime. Today we have three in-
dependent descriptions of scattering amplitudes in pla-
nar N=4 SYM. A weak-coupling formulation makes con-
tact with standard Feynman diagrammatic perturbation
theory [1, 2]; a “holographic” strong-coupling formu-
lation employs minimal area surfaces in Anti-de Sitter
space [3, 4]; and the Pentagon Operator Product Expan-
sion (OPE) approach exploits the two-dimensional inte-
grability of a dual string picture at finite coupling in vari-
ous kinematic limits [5–7]. The three formulations are all

mutually consistent, but they explore different physics,
use seemingly different mathematics, and make different
properties of amplitudes manifest. The task for the fu-
ture is to answer the physical question: How do all these

pieces of the puzzle fit in within a single unifying descrip-
tion of scattering amplitudes and quantum field theory?

There is a corresponding mathematical question: what
are the right functions to express all facets of the answer,
from weak to strong coupling and for arbitrary kinemat-
ics?
Facets of these overarching questions include: How do

gluonic and stringy descriptions morph into each other
as the coupling and kinematics are varied? What kind of
singularities show up and what is the physics associated
to them? How do holographic dualities, string theory,
and even space-time itself, emerge dynamically from pla-
nar gauge theories? Solving scattering in planar N=4
SYM will provide a quantitative test for physical and
mathematical expectations, and will lead to improved in-
tuition for the behavior of more general theories.
Returning to perturbation theory, Feynman diagrams

express loop amplitudes as a sum over terms, each of
which must be integrated over the loop momenta. For
gauge theories in the planar limit of a large number of
colors, these terms can be combined into a single ob-
ject, the loop integrand or scattering form [8]. Scatter-
ing forms for massless theories can be computed by “on-
shell diagrams”, which arise from gluing three-particle
interactions together, not at points in space-time as with
Feynman diagrams, but non-locally along the lightcones
associated with massless particle trajectories [9]. Individ-
ual on-shell diagrams in any planar theory are associated
with a certain differential form on a manifold called the
positive Grassmannian.
The scattering form for massless planar N=4 SYM

is particularly simple, and it can be determined recur-
sively by exploiting the physical requirements of locality
and unitarity. Even more remarkably, it can be defined
as “the volume” of the amplituhedron [10, 11], a dou-
ble generalization of the positive Grassmannian, roughly
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analogous to the way convex plane polygons generalize
triangles. The scattering form is the unique form with
logarithmic singularities on all boundaries of the ampli-
tuhedron. In this approach, scattering amplitudes are
uniquely dictated by geometry. The basic rules of space-
time and quantum mechanics can therefore arise as out-
puts of geometry, rather than as fundamental starting
points. The exploration of these geometric aspects of
particle scattering is still in its infancy. A full determi-
nation of the topology and cell structure of the ampli-
tuhedron is a clear goal for the coming years, as is the
nonperturbative generalization of these notions.

Given a scattering form, one must perform the loop
integrals to obtain an amplitude. In many cases, in
both QCD and N=4 SYM, the integrals are generalized
polylogarithms in the Mandelstam variables (or certain
dual conformal cross ratios formed from them) [12–18].
More complicated functions also appear: elliptic poly-
logarithms, associated with genus 1 curves [19–25], and
“beyond elliptic” functions associated with higher dimen-
sional Calabi-Yau manifolds [26, 27]. These transcenden-
tal functions have strong physical restrictions on their
branch cuts: They can only appear (on the first sheet)
at physical thresholds, and double discontinuities in par-
tially overlapping channels are forbidden by the Stein-
mann relations [28, 29]. In the case of planar N=4 SYM,
these constraints, along with a knowledge of certain other
singularities, have allowed six-point amplitudes to be
bootstrapped through seven loops [30, 31] (and seven-
point amplitudes through four loops [32–34]), by simply
writing the answer as a linear combination of the right
functions and then imposing physical constraints, with-
out any direct reference to the underlying loop integrand.
A future challenge is to extend these methods to the el-
liptic case and beyond, for applications to N=4 SYM and
to QCD for the LHC. For the LHC, a premium will be
placed on efficient numerical evaluation in all regions of
the physical phase space, but such efficiency may benefit
from a bootstrapping perspective as well.

Another very exciting new direction is the connec-

tion between scattering amplitudes and cluster alge-
bras [35, 36]. One connection is at the level of the scat-
tering form: the positive Grassmannian is naturally en-
dowed with a cluster structure [9]. Another connection
is to the structure of multi-loop amplitudes after inte-
grating over all the loop momenta [2, 37–39]. In the best
understood cases, the singularities of the polylogarithmic
functions are located at the vanishing loci of cluster co-
ordinates on the Grassmannian cluster algebra Gr(4, n).
The appearance and organization of cluster variables in
amplitudes in multiple ways strongly suggests that scat-
tering amplitudes should be thought of as answers to deep
new mathematical questions rooted in cluster geometry.
It has recently become clear that surprisingly many

of the remarkable properties of planar N=4 SYM gen-
eralize to the nonplanar sector [40], and even to (su-
per)gravity [41, 42], where there is no separation be-
tween planar and nonplanar. Still to be identified are
the mathematical structures that play the same role as
the amplituhedron does in the planar case. An improved
understanding of scattering forms for nonplanar N=4
SYM could be extended to quantum (super)gravities and
thereby help to determine their ultraviolet behavior.
Our understanding of N=4 SYM beyond the planar

limit has already contributed to results relevant for col-
lider physics, in the area of infrared resummation and
other soft-gluon effects. At higher perturbative orders,
soft effects can connect more hard partons together.
The first time they are connected by a web of gluons,
the contribution is the same in N=4 SYM as in QCD.
This feature was exploited for the terms in the three-
loop soft anomalous dimension connecting four hard par-
tons [43, 44], and more recently in the computation of the
two-loop amplitude for soft-gluon emission in the pres-
ence of three hard partons [45]. More results of a similar
variety will surely appear in the future.
We believe that the continued intensive study of scat-

tering in N = 4 SYM will further transform our under-
standing of quantum scattering, with multiple payoffs for
high-energy physics that are both conceptual and prac-
tical in nature.
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